
pyfftlog Documentation
Release 0.2.0

Dieter Werthmüller

16 May 2020

User Manual

1 pyfftlog - A python version of FFTLog 3
1.1 Description of FFTLog from the FFTLog-Website . 3
1.2 Installation . 4
1.3 License, Citation, and Credits . 4

Bibliography 17

Python Module Index 19

Index 21

i

ii

pyfftlog Documentation, Release 0.2.0

Version: 0.2.0 ~ Date: 16 May 2020

User Manual 1

pyfftlog Documentation, Release 0.2.0

2 User Manual

CHAPTER 1

pyfftlog - A python version of FFTLog

This is a python version of the logarithmic FFT code FFTLog as presented in Appendix B of Hamilton (2000) and
published at casa.colorado.edu/~ajsh/FFTLog.

A simple f2py-wrapper (fftlog) can be found on github.com/prisae/fftlog. Tests have shown that fftlog is a bit faster
than pyfftlog, but pyfftlog is easier to implement, as you only need NumPy and SciPy, without the need to compile
anything.

I hope that FFTLog will make it into SciPy in the future, which will make this project redundant. (If you have the
bandwidth and are willing to chip in have a look at SciPy PR #7310.)

Be aware that pyfftlog has not been tested extensively. It works fine for the test from the original code, and my
use case, which is pyfftlog.fftl with mu=0.5 (sine-transform), q=0 (unbiased), k=1, kropt=1, and tdir=1 (forward).
Please let me know if you encounter any issues.

• Documentation: https://pyfftlog.readthedocs.io

• Source Code: https://github.com/prisae/pyfftlog

1.1 Description of FFTLog from the FFTLog-Website

FFTLog is a set of fortran subroutines that compute the fast Fourier or Hankel (= Fourier-Bessel) transform of a
periodic sequence of logarithmically spaced points.

FFTLog can be regarded as a natural analogue to the standard Fast Fourier Transform (FFT), in the sense that,
just as the normal FFT gives the exact (to machine precision) Fourier transform of a linearly spaced periodic
sequence, so also FFTLog gives the exact Fourier or Hankel transform, of arbitrary order m, of a logarithmically
spaced periodic sequence.

FFTLog shares with the normal FFT the problems of ringing (response to sudden steps) and aliasing (periodic
folding of frequencies), but under appropriate circumstances FFTLog may approximate the results of a continuous
Fourier or Hankel transform.

The FFTLog algorithm was originally proposed by Talman (1978).

For the full documentation, see casa.colorado.edu/~ajsh/FFTLog.

3

http://dx.doi.org/10.1046/j.1365-8711.2000.03071.x
http://casa.colorado.edu/~ajsh/FFTLog
https://github.com/prisae/fftlog
https://github.com/scipy/scipy/pull/7310
https://pyfftlog.readthedocs.io
https://github.com/prisae/pyfftlog
http://dx.doi.org/10.1016/0021-9991(78)90107-9
http://casa.colorado.edu/~ajsh/FFTLog

pyfftlog Documentation, Release 0.2.0

1.2 Installation

You can install pyfftlog either via conda:

conda install -c conda-forge pyfftlog

or via pip:

pip install pyfftlog

1.3 License, Citation, and Credits

Released to the public domain under the CC0 1.0 License.

All releases have a Zenodo-DOI, which can be found on 10.5281/zenodo.3830364.

Be kind and give credits by citing Hamilton (2000). See the references-section in the manual for full references.

1.3.1 Manual and API

pyfftlog – Python version of FFTLog

This is a Python version of the FFTLog Fortran code by Andrew Hamilton, [Hami00].

The function scipy.special.loggamma replaces the file cdgamma.f in the original code, and the functions
scipy.fftpack.rfft() and scipy.fftpack.irfft() replace the files drffti.f, drfftf.f, and drfftb.f in
the original code.

The original documentation has just been adjusted where necessary, and put into a more pythonic format (e.g.
using Parameters and Returns in the documentation’).

What follows is the original documentation from the file ‘fftlog.f‘:

THE FFTLog CODE

FFTLog computes the discrete Fast Fourier Transform or Fast Hankel Transform (of arbitrary real index) of a
periodic logarithmic sequence.

• Version of 13 Mar 2000.

• For more information about FFTLog, see http://casa.colorado.edu/~ajsh/FFTLog.

• Andrew J S Hamilton March 1999.

• Refs: [Talm78].

FFTLog computes a discrete version of the Hankel Transform (= Fourier-Bessel Transform) with a power law bias
(𝑘𝑟)𝑞

𝑎̃(𝑘) =

∫︁ ∞

0

𝑎(𝑟)(𝑘𝑟)𝑞𝐽𝜇(𝑘𝑟)𝑘 𝑑𝑟 , (1.1)

𝑎(𝑟) =

∫︁ ∞

0

𝑎̃(𝑘)(𝑘𝑟)−𝑞𝐽𝜇(𝑘𝑟)𝑟 𝑑𝑘 , (1.2)

where 𝐽𝜇 is the Bessel function of order 𝜇. The index 𝜇 may be any real number, positive or negative.

The input array 𝑎𝑗 is a periodic sequence of length 𝑛, uniformly logarithmically spaced with spacing 𝑑𝑙𝑛𝑟

𝑎𝑗 = 𝑎(𝑟𝑗) at 𝑟𝑗 = 𝑟𝑐 exp[(𝑗 − 𝑗𝑐)𝑑𝑙𝑛𝑟] (1.3)

4 Chapter 1. pyfftlog - A python version of FFTLog

http://creativecommons.org/publicdomain/zero/1.0
https://doi.org/10.5281/zenodo.3830364
http://dx.doi.org/10.1046/j.1365-8711.2000.03071.x
https://pyfftlog.readthedocs.io/en/stable/references.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.loggamma.html#scipy.special.loggamma
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.rfft.html#scipy.fftpack.rfft
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.irfft.html#scipy.fftpack.irfft
http://casa.colorado.edu/~ajsh/FFTLog

pyfftlog Documentation, Release 0.2.0

centred about the point 𝑟𝑐. The central index 𝑗𝑐 = (𝑛+ 1)/2 is 1/2 integral if 𝑛 is even. Similarly, the output array
𝑎̃𝑗 is a periodic sequence of length 𝑛, also uniformly logarithmically spaced with spacing 𝑑𝑙𝑛𝑟

𝑎̃𝑗 = 𝑎̃(𝑘𝑗) at 𝑘𝑗 = 𝑘𝑐 exp[(𝑗 − 𝑗𝑐)𝑑𝑙𝑛𝑟] (1.4)

centred about the point 𝑘𝑐.

The centre points 𝑟𝑐 and 𝑘𝑐 of the periodic intervals may be chosen arbitrarily; but it would be normal to choose
the product

𝑘𝑟 = 𝑘𝑐𝑟𝑐 = 𝑘𝑗𝑟(𝑛+1−𝑗) = 𝑘(𝑛+1−𝑗)𝑟𝑗 (1.5)

to be about 1 (or 2, or pi, to taste).

The FFTLog algorithm is (see [Hami00]):

1. FFT the input array 𝑎𝑗 to obtain the Fourier coefficients 𝑐𝑚 ;

2. Multiply 𝑐𝑚 by 𝑢𝑚 = (𝑘𝑟)−𝑖2𝑚𝜋/(𝑛𝑑𝑙𝑛𝑟)𝑈𝜇[𝑞+𝑖2𝑚𝜋/(𝑛𝑑𝑙𝑛𝑟)] where 𝑈𝜇(𝑥) = 2𝑥Γ[(𝜇+1+𝑥)/2]/Γ[(𝜇+
1 − 𝑥)/2] to obtain 𝑐𝑚𝑢𝑚;

3. FFT 𝑐𝑚𝑢𝑚 back to obtain the discrete Hankel transform 𝑎̃𝑗 .

The Fourier sine and cosine transforms

𝐴(𝑘) =
√︀

2/𝜋

∫︁ ∞

0

𝐴(𝑟) sin(𝑘𝑟) 𝑑𝑟 , (1.6)

𝐴(𝑘) =
√︀

2/𝜋

∫︁ ∞

0

𝐴(𝑟) cos(𝑘𝑟) 𝑑𝑟 , (1.7)

may be regarded as special cases of the Hankel transform with 𝜇 = 1/2 and −1/2 since√︀
2/𝜋 sin(𝑥) =

√︀
(𝑥)𝐽1/2(𝑥) , (1.8)√︀

2/𝜋 cos(𝑥) =
√︀

(𝑥)𝐽−1/2(𝑥) . (1.9)

The Fourier transforms may be done by making the substitutions

𝐴(𝑟) = 𝑎(𝑟)𝑟𝑞−1/2 and 𝐴(𝑘) = 𝑎̃(𝑘)𝑘−𝑞−1/2 (1.10)

and Hankel transforming 𝑎(𝑟) with a power law bias (𝑘𝑟)𝑞

𝑎̃(𝑘) =

∫︁ ∞

0

𝑎(𝑟)(𝑘𝑟)𝑞𝐽±1/2(𝑘𝑟)𝑘 𝑑𝑟 . (1.11)

Different choices of power law bias 𝑞 lead to different discrete Fourier transforms of 𝐴(𝑟), because the assumption
of periodicity of 𝑎(𝑟) = 𝐴(𝑟)𝑟−𝑞+(1/2) is different for different 𝑞.

If 𝐴(𝑟) is a power law, 𝐴(𝑟) proportional to 𝑟𝑞−(1/2), then applying a bias 𝑞 yields a discrete Fourier transform
𝐴(𝑘) that is exactly equal to the continuous Fourier transform, because then 𝑎(𝑟) is a constant, which is a periodic
function.

The Hankel transform

𝐴(𝑘) =

∫︁ ∞

0

𝐴(𝑟)𝐽𝜇(𝑘𝑟)𝑘 𝑑𝑟 (1.12)

1.3. License, Citation, and Credits 5

pyfftlog Documentation, Release 0.2.0

may be done by making the substitutions

𝐴(𝑟) = 𝑎(𝑟)𝑟𝑞 and 𝐴(𝑘) = 𝑎̃(𝑘)𝑘−𝑞 (1.13)

and Hankel transforming 𝑎(𝑟) with a power law bias (𝑘𝑟)𝑞

𝑎̃(𝑘) =

∫︁ ∞

0

𝑎(𝑟)(𝑘𝑟)𝑞𝐽𝜇(𝑘𝑟)𝑘 𝑑𝑟 . (1.14)

Different choices of power law bias 𝑞 lead to different discrete Hankel transforms of 𝐴(𝑟), because the assumption
of periodicity of 𝑎(𝑟) = 𝐴(𝑟)𝑟−𝑞 is different for different 𝑞.

If 𝐴(𝑟) is a power law, 𝐴(𝑟) proportional to 𝑟𝑞 , then applying a bias 𝑞 yields a discrete Hankel transform 𝐴(𝑘) that
is exactly equal to the continuous Hankel transform, because then 𝑎(𝑟) is a constant, which is a periodic function.

There are five routines:

Comments in the subroutines contain further details.

1. subroutine ‘fhti(n,mu,q,dlnr,kr,kropt,wsave,ok)‘ is an initialization routine.

2. subroutine ‘fftl(n,a,rk,dir,wsave)‘ computes the discrete Fourier sine or cosine transform of a logarithmi-
cally spaced periodic sequence. This is a driver routine that calls fhtq.

3. subroutine ‘fht(n,a,dir,wsave)‘ computes the discrete Hankel transform of a logarithmically spaced peri-
odic sequence. This is a driver routine that calls fhtq.

4. subroutine ‘fhtq(n,a,dir,wsave)‘ computes the biased discrete Hankel transform of a logarithmically
spaced periodic sequence. This is the basic FFTLog routine.

5. real*8 function ‘krgood(mu,q,dlnr,kr)‘ takes an input kr and returns the nearest low-ringing kr. This is
an optional routine called by fhti.

END of the original documentation from the file ‘fftlog.f‘

pyfftlog.pyfftlog.fhti(n, mu, dlnr, q=0, kr=1, kropt=0)
Initialize the working array xsave used by fftl, fht, and fhtq.

fhti initializes the working array xsave used by fftl, fht, and fhtq. fhti need be called once, whereafter fftl,
fht, or fhtq may be called many times, as long as n, mu, q, dlnr, and kr remain unchanged. fhti should be
called each time n, mu, q, dlnr, or kr is changed. The work array xsave should not be changed between calls
to fftl, fht, or fhtq.

Parameters

n [int] Number of points in the array to be transformed; n may be any positive integer, but
the FFT routines run fastest if n is a product of small primes 2, 3, 5.

mu [float] Index of J_mu in Hankel transform; mu may be any real number, positive or
negative.

dlnr [float] Separation between natural log of points; dlnr may be positive or negative.

q [float, optional] Exponent of power law bias; q may be any real number, positive or
negative. If in doubt, use q = 0, for which case the Hankel transform is orthogonal, i.e.
self-inverse, provided also that, for n even, kr is low-ringing. Non-zero q may yield
better approximations to the continuous Hankel transform for some functions. Defaults
to 0 (unbiased).

kr [float, optional] k_c r_c where c is central point of array = k_j r_(n+1-j) = k_(n+1-j) r_j
. Normally one would choose kr to be about 1 (default) (or 2, or pi, to taste).

kropt [int, optional; {0, 1, 2, 3}]

• 0 to use input kr as is (default);

• 1 to change kr to nearest low-ringing kr, quietly;

6 Chapter 1. pyfftlog - A python version of FFTLog

pyfftlog Documentation, Release 0.2.0

• 2 to change kr to nearest low-ringing kr, verbosely;

• 3 for option to change kr interactively.

Returns

kr [float, optional] kr, adjusted depending on kropt.

xsave [array] Working array used by fftl, fht, and fhtq. Dimension: - for q = 0 (unbiased
transform): n+3 - for q != 0 (biased transform): 1.5*n+4 If odd, last element is not
needed.

pyfftlog.pyfftlog.fftl(a, xsave, rk=1, tdir=1)
Logarithmic fast Fourier transform FFTLog.

This is a driver routine that calls fhtq().

fftl computes a discrete version of the Fourier sine (if mu = 1/2) or cosine (if mu = -1/2) transform

𝐴(𝑘) =
√︀

2/𝜋

∫︁ ∞

0

𝐴(𝑟) sin(𝑘𝑟) 𝑑𝑟 ,

𝐴(𝑘) =
√︀

2/𝜋

∫︁ ∞

0

𝐴(𝑟) cos(𝑘𝑟) 𝑑𝑟 ,

by making the substitutions

𝐴(𝑟) = 𝑎(𝑟)𝑟𝑞−1/2 and 𝐴(𝑘) = 𝑎̃(𝑘)𝑘−𝑞−1/2

and applying a biased Hankel transform to 𝑎(𝑟).

The steps are: 1. 𝑎(𝑟) = 𝐴(𝑟)𝑟[− 𝑑𝑖𝑟(𝑞 − 0.5)] 2. call fhtq to transform 𝑎(𝑟) → 𝑎̃(𝑘) 3. 𝐴(𝑘) =
𝑎̃(𝑘)𝑘[− 𝑑𝑖𝑟(𝑞 + 0.5)]

fhti must be called before the first call to fftl, with mu=1/2 for a sine transform, or mu=-1/2 for a cosine
transform.

A call to fftl with dir=1 followed by a call to fftl with dir=-1 (and rk unchanged), or vice versa, leaves the
array a unchanged.

Parameters

a [array] Array A(r) to transform: a(j) is A(r_j) at r_j = r_c exp[(j-jc) dlnr], where jc =
(n+1)/2 = central index of array.

xsave [array] Working array set up by fhti.

rk [float, optional] r_c/k_c = r_j/k_j (a constant, the same constant for any j); rk is not
(necessarily) the same quantity as kr. rk is used only to multiply the output array by
sqrt(rk)^dir, so if you want to do the normalization later, or you don’t care about the
normalization, you can set rk = 1. Defaults to 1.

tdir [int, optional; {1, -1}]

• 1 for forward transform (default),

• -1 for backward transform.

A backward transform (dir = -1) is the same as a forward transform with q -> -q and rk
-> 1/rk, for any kr if n is odd, for low-ringing kr if n is even.

Returns

a [array] Transformed array Ã(k): a(j) is Ã(k_j) at k_j = k_c exp[(j-jc) dlnr].

pyfftlog.pyfftlog.fht(a, xsave, tdir=1)
Fast Hankel transform FHT.

This is a driver routine that calls fhtq().

1.3. License, Citation, and Credits 7

pyfftlog Documentation, Release 0.2.0

fht computes a discrete version of the Hankel transform

𝐴(𝑘) =

∫︁ ∞

0

𝐴(𝑟)𝐽𝜇(𝑘𝑟)𝑘 𝑑𝑟

by making the substitutions

𝐴(𝑟) = 𝑎(𝑟)𝑟𝑞 and 𝐴(𝑘) = 𝑎̃(𝑘)𝑘−𝑞

and applying a biased Hankel transform to 𝑎(𝑟).

The steps are: 1. 𝑎(𝑟) = 𝐴(𝑟)𝑟−𝑑𝑖𝑟𝑞 2. call fhtq to transform 𝑎(𝑟) → 𝑎̃(𝑘) 3. 𝐴(𝑘) = 𝑎̃(𝑘)𝑘−𝑑𝑖𝑟𝑞

fhti must be called before the first call to fht.

A call to fht with dir=1 followed by a call to fht with dir=-1, or vice versa, leaves the array a unchanged.

Parameters

a [array] Array A(r) to transform: a(j) is A(r_j) at r_j = r_c exp[(j-jc) dlnr], where jc =
(n+1)/2 = central index of array.

xsave [array] Working array set up by fhti.

tdir [int, optional; {1, -1}]

• 1 for forward transform (default),

• -1 for backward transform.

A backward transform (dir = -1) is the same as a forward transform with q -> -q, for any
kr if n is odd, for low-ringing kr if n is even.

Returns

a [array] Transformed array Ã(k): a(j) is Ã(k_j) at k_j = k_c exp[(j-jc) dlnr].

pyfftlog.pyfftlog.fhtq(a, xsave, tdir=1)
Kernel routine of FFTLog.

This is the basic FFTLog routine.

fhtq computes a discrete version of the biased Hankel transform

𝑎̃(𝑘) =

∫︁ ∞

0

𝑎(𝑟)(𝑘𝑟)𝑞𝐽𝜇(𝑘𝑟)𝑘 𝑑𝑟 .

fhti must be called before the first call to fhtq.

A call to fhtq with dir=1 followed by a call to fhtq with dir=-1, or vice versa, leaves the array a unchanged.

Parameters

a [array] Periodic array a(r) to transform: a(j) is a(r_j) at r_j = r_c exp[(j-jc) dlnr] where jc
= (n+1)/2 = central index of array.

xsave [array] Working array set up by fhti.

tdir [int, optional; {1, -1}]

• 1 for forward transform (default),

• -1 for backward transform.

A backward transform (dir = -1) is the same as a forward transform with q -> -q, for any
kr if n is odd, for low-ringing kr if n is even.

Returns

a [array] Transformed periodic array ã(k): a(j) is ã(k_j) at k_j = k_c exp[(j-jc) dlnr].

8 Chapter 1. pyfftlog - A python version of FFTLog

pyfftlog Documentation, Release 0.2.0

pyfftlog.pyfftlog.krgood(mu, q, dlnr, kr)
Return optimal kr.

Use of this routine is optional.

Choosing kr so that

(𝑘𝑟)−𝑖𝑝𝑖/𝑑𝑙𝑛𝑟𝑈𝜇(𝑞 + 𝑖𝑝𝑖/𝑑𝑙𝑛𝑟)

is real may reduce ringing of the discrete Hankel transform, because it makes the transition of this function
across the period boundary smoother.

Parameters

mu [float] index of J_mu in Hankel transform; mu may be any real number, positive or
negative.

q [float] exponent of power law bias; q may be any real number, positive or negative. If in
doubt, use q = 0, for which case the Hankel transform is orthogonal, i.e. self-inverse,
provided also that, for n even, kr is low-ringing. Non-zero q may yield better approxi-
mations to the continuous Hankel transform for some functions.

dlnr [float] separation between natural log of points; dlnr may be positive or negative.

kr [float, optional] k_c r_c where c is central point of array = k_j r_(n+1-j) = k_(n+1-j) r_j
. Normally one would choose kr to be about 1 (default) (or 2, or pi, to taste).

Returns

krgood [float] low-ringing value of kr nearest to input kr. ln(krgood) is always within dlnr/2
of ln(kr).

1.3.2 Examples

FFTLog-Test

This example is a translation of fftlogtest.f from the Fortran package FFTLog, which was presented in Appendix
B of [Hami00] and published at http://casa.colorado.edu/~ajsh/FFTLog. It serves as an example for the python
package pyfftlog (which is a Python version of FFTLog), in the same manner as the original file fftlogtest.f serves
as an example for Fortran package FFTLog.

What follows is the original documentation from the file ‘fftlogtest.f‘:

This is fftlogtest.f

This is a simple test program to illustrate how FFTLog works. The test transform is:∫︁ ∞

0

𝑟𝜇+1 exp

(︂
−𝑟2

2

)︂
𝐽𝜇(𝑘, 𝑟) 𝑘 d𝑟 = 𝑘𝜇+1 exp

(︂
−𝑘2

2

)︂
(1.15)

Disclaimer

FFTLog does NOT claim to provide the most accurate possible solution of the continuous transform (which is the
stated aim of some other codes). Rather, FFTLog claims to solve the exact discrete transform of a logarithmically-
spaced periodic sequence. If the periodic interval is wide enough, the resolution high enough, and the function
well enough behaved outside the periodic interval, then FFTLog may yield a satisfactory approximation to the
continuous transform.

Observe:

1. How the result improves as the periodic interval is enlarged. With the normal FFT, one is not used to ranges
orders of magnitude wide, but this is how FFTLog prefers it.

1.3. License, Citation, and Credits 9

http://casa.colorado.edu/~ajsh/FFTLog

pyfftlog Documentation, Release 0.2.0

2. How the result improves as the resolution is increased. Because the function is rather smooth, modest
resolution actually works quite well here.

3. That the central part of the transform is more reliable than the outer parts. Experience suggests that a good
general strategy is to double the periodic interval over which the input function is defined, and then to
discard the outer half of the transform.

4. That the best bias exponent seems to be 𝑞 = 0.

5. That for the critical index 𝜇 = −1, the result seems to be offset by a constant from the ‘correct’ answer.

6. That the result grows progressively worse as mu decreases below -1.

The analytic integral above fails for 𝜇 ≤ −1, but FFTLog still returns answers. Namely, FFTLog returns the
analytic continuation of the discrete transform. Because of ambiguity in the path of integration around poles, this
analytic continuation is liable to differ, for 𝜇 ≤ −1, by a constant from the ‘correct’ continuation given by the
above equation.

FFTLog begins to have serious difficulties with aliasing as 𝜇 decreases below −1, because then 𝑟𝜇+1 exp(−𝑟2/2)
is far from resembling a periodic function. You might have thought that it would help to introduce a bias exponent
𝑞 = 𝜇, or perhaps 𝑞 = 𝜇 + 1, or more, to make the function 𝑎(𝑟) = 𝐴(𝑟)𝑟−𝑞 input to fhtq more nearly periodic.
In practice a nonzero 𝑞 makes things worse.

A symmetry argument lends support to the notion that the best exponent here should be 𝑞 = 0, as empirically
appears to be true. The symmetry argument is that the function 𝑟𝜇+1 exp(−𝑟2/2) happens to be the same as its
transform 𝑘𝜇+1 exp(−𝑘2/2). If the best bias exponent were q in the forward transform, then the best exponent
would be −𝑞 that in the backward transform; but the two transforms happen to be the same in this case, suggesting
𝑞 = −𝑞, hence 𝑞 = 0.

This example illustrates that you cannot always tell just by looking at a function what the best bias exponent 𝑞
should be. You also have to look at its transform. The best exponent 𝑞 is, in a sense, the one that makes both the
function and its transform look most nearly periodic.

import pyfftlog
import numpy as np
import matplotlib.pyplot as plt

Define the parameters you wish to use

The presets are the Reasonable choices of parameters from fftlogtest.f.

Range of periodic interval
logrmin = -4
logrmax = 4

Number of points (Max 4096)
n = 64

Order mu of Bessel function
mu = 0

Bias exponent: q = 0 is unbiased
q = 0

Sensible approximate choice of k_c r_c
kr = 1

Tell fhti to change kr to low-ringing value
WARNING: kropt = 3 will fail, as interaction is not supported
kropt = 1

Forward transform (changed from dir to tdir, as dir is a python fct)
tdir = 1

10 Chapter 1. pyfftlog - A python version of FFTLog

pyfftlog Documentation, Release 0.2.0

Calculation related to the logarithmic spacing

Central point log10(r_c) of periodic interval
logrc = (logrmin + logrmax)/2

print(f"Central point of periodic interval at log10(r_c) = {logrc}")

Central index (1/2 integral if n is even)
nc = (n + 1)/2.0

Log-spacing of points
dlogr = (logrmax - logrmin)/n
dlnr = dlogr*np.log(10.0)

Out:

Central point of periodic interval at log10(r_c) = 0.0

Calculate input function: 𝑟𝜇+1 exp
(︁
− 𝑟2

2

)︁
r = 10**(logrc + (np.arange(1, n+1) - nc)*dlogr)
ar = r**(mu + 1)*np.exp(-r**2/2.0)

Initialize FFTLog transform - note fhti resets kr

kr, xsave = pyfftlog.fhti(n, mu, dlnr, q, kr, kropt)
print(f"pyfftlog.fhti: new kr = {kr}")

Out:

pyfftlog.fhti: new kr = 0.9535389675791917

Call pyfftlog.fht (or pyfftlog.fhtl)

logkc = np.log10(kr) - logrc
print(f"Central point in k-space at log10(k_c) = {logkc}")

rk = r_c/k_c
rk = 10**(logrc - logkc)

Transform
ak = pyfftlog.fftl(ar.copy(), xsave, rk, tdir)
ak = pyfftlog.fht(ar.copy(), xsave, tdir)

Out:

Central point in k-space at log10(k_c) = -0.020661554260541743

Calculate Output function: 𝑘𝜇+1 exp
(︁
−𝑘2

2

)︁
k = 10**(logkc + (np.arange(1, n+1) - nc)*dlogr)
theo = k**(mu + 1)*np.exp(-k**2/2.0)

1.3. License, Citation, and Credits 11

pyfftlog Documentation, Release 0.2.0

Plot result

plt.figure()

Input
ax1 = plt.subplot(121)
plt.title(r'$r^{\mu+1}\ \exp(-r^2/2)$')
plt.xlabel('r')

plt.loglog(r, ar, 'k', lw=2)

plt.grid(axis='y', c='0.9')

Transformed result
ax2 = plt.subplot(122, sharey=ax1)
plt.title(r'$k^{\mu+1} \exp(-k^2/2)$')
plt.xlabel('k')

plt.loglog(k, theo, 'k', lw=2, label='Theoretical')
plt.loglog(k, ak, 'r--', lw=2, label='FFTLog')

plt.legend()
plt.ylim([1e-8, 1e1])

ax2.yaxis.tick_right()
ax2.yaxis.set_label_position("right")
plt.grid(axis='y', c='0.9')

Switch off spines
ax1.spines['top'].set_visible(False)
ax1.spines['right'].set_visible(False)
ax2.spines['top'].set_visible(False)
ax2.spines['left'].set_visible(False)
plt.tight_layout(rect=[0, 0, 1, .9])

Main title
plt.suptitle(r"$\int_0^\infty r^{\mu+1}\ \exp(-r^2/2)\ J_\mu(k,r)\ " +

r"k\ {\rm d}r = k^{\mu+1} \exp(-k^2/2)$", y=0.98)

plt.show()

12 Chapter 1. pyfftlog - A python version of FFTLog

pyfftlog Documentation, Release 0.2.0

Print values

print(' k a(k) k^(mu+1) exp(-k^2/2)')
print('--')
for i in range(n):

print(f"{k[i]:18.6e} {ak[i]:18.6e} {theo[i]:18.6e}")

Out:

k a(k) k^(mu+1) exp(-k^2/2)
--

1.101130e-04 6.332603e-05 1.101130e-04
1.468380e-04 9.168618e-05 1.468380e-04
1.958116e-04 1.374282e-04 1.958116e-04
2.611190e-04 2.131954e-04 2.611190e-04
3.482078e-04 3.318802e-04 3.482077e-04
4.643425e-04 4.923984e-04 4.643425e-04
6.192107e-04 6.460278e-04 6.192106e-04
8.257307e-04 7.968931e-04 8.257304e-04
1.101130e-03 1.113736e-03 1.101129e-03
1.468380e-03 1.464233e-03 1.468378e-03
1.958116e-03 1.959475e-03 1.958112e-03
2.611190e-03 2.610678e-03 2.611181e-03
3.482078e-03 3.482260e-03 3.482056e-03
4.643425e-03 4.643299e-03 4.643375e-03
6.192107e-03 6.191999e-03 6.191988e-03
8.257307e-03 8.257056e-03 8.257026e-03
1.101130e-02 1.101057e-02 1.101063e-02
1.468380e-02 1.468230e-02 1.468222e-02

(continues on next page)

1.3. License, Citation, and Credits 13

pyfftlog Documentation, Release 0.2.0

(continued from previous page)

1.958116e-02 1.957729e-02 1.957741e-02
2.611190e-02 2.610314e-02 2.610300e-02
3.482078e-02 3.479950e-02 3.479967e-02
4.643425e-02 4.638444e-02 4.638422e-02
6.192107e-02 6.180220e-02 6.180247e-02
8.257307e-02 8.229239e-02 8.229205e-02
1.101130e-01 1.094470e-01 1.094474e-01
1.468380e-01 1.452640e-01 1.452635e-01
1.958116e-01 1.920928e-01 1.920934e-01
2.611190e-01 2.523680e-01 2.523671e-01
3.482078e-01 3.277241e-01 3.277250e-01
4.643425e-01 4.168889e-01 4.168871e-01
6.192107e-01 5.111853e-01 5.111866e-01
8.257307e-01 5.871956e-01 5.871927e-01
1.101130e+00 6.005500e-01 6.005516e-01
1.468380e+00 4.996049e-01 4.996187e-01
1.958116e+00 2.879340e-01 2.879045e-01
2.611190e+00 8.632888e-02 8.634968e-02
3.482078e+00 8.102022e-03 8.108819e-03
4.643425e+00 1.180344e-04 9.656964e-05
6.192107e+00 -1.553139e-05 2.923736e-08
8.257307e+00 7.225353e-06 1.291402e-14
1.101130e+01 -2.588950e-06 5.164519e-26
1.468380e+01 7.719794e-07 2.222595e-46
1.958116e+01 1.586977e-07 1.078537e-82
2.611190e+01 -1.874092e-07 2.285953e-147
3.482078e+01 5.576689e-07 1.793712e-262
4.643425e+01 -1.317041e-07 0.000000e+00
6.192107e+01 6.415736e-07 0.000000e+00
8.257307e+01 1.351283e-07 0.000000e+00
1.101130e+02 7.997181e-07 0.000000e+00
1.468380e+02 5.394094e-07 0.000000e+00
1.958116e+02 1.165867e-06 0.000000e+00
2.611190e+02 1.176786e-06 0.000000e+00
3.482078e+02 1.889416e-06 0.000000e+00
4.643425e+02 2.248731e-06 0.000000e+00
6.192107e+02 3.228937e-06 0.000000e+00
8.257307e+02 4.113223e-06 0.000000e+00
1.101130e+03 5.651921e-06 0.000000e+00
1.468380e+03 7.408687e-06 0.000000e+00
1.958116e+03 1.001142e-05 0.000000e+00
2.611190e+03 1.330606e-05 0.000000e+00
3.482078e+03 1.792186e-05 0.000000e+00
4.643425e+03 2.410633e-05 0.000000e+00
6.192107e+03 3.277422e-05 0.000000e+00
8.257307e+03 4.510046e-05 0.000000e+00

Total running time of the script: (0 minutes 2.344 seconds)

1.3.3 References

1.3.4 Changelog

v0.2.0 : First packaged release

2020-05-16

First packaged release on PyPi and conda-forge. This includes:

• Re-structuring the repo.

14 Chapter 1. pyfftlog - A python version of FFTLog

pyfftlog Documentation, Release 0.2.0

• Add a proper documentation, https://pyfftlog.readthedocs.io, convert plain-text math into LaTeX, and add a
reference section.

• Add example notebook as sphinx-gallery to docs.

• Add tests and CI on Travis, https://travis-ci.org/github/prisae/pyfftlog.

• Link to Zenodo, https://zenodo.org/record/3830366.

• PEP8 checking and coveralls (https://coveralls.io/github/prisae/pyfftlog).

• Add the relevant badges to README.

v0.1.1 : Bugfix uneven values

2019-08-16

• Small bugfix for uneven values.

v0.1.0 : Initial upload to GitHub

2016-12-09

• Initially working version uploaded to GitHub.

1.3. License, Citation, and Credits 15

https://pyfftlog.readthedocs.io
https://travis-ci.org/github/prisae/pyfftlog
https://zenodo.org/record/3830366
https://coveralls.io/github/prisae/pyfftlog

pyfftlog Documentation, Release 0.2.0

16 Chapter 1. pyfftlog - A python version of FFTLog

Bibliography

[Hami00] Hamilton, A. J. S., 2000, Uncorrelated modes of the non-linear power spectrum: Monthly Notices
of the Royal Astronomical Society, 312, pages 257–284; DOI: 10.1046/j.1365-8711.2000.03071.x;
Website of FFTLog: casa.colorado.edu/~ajsh/FFTLog.

[Talm78] Talman, J. D., 1978, Numerical Fourier and Bessel transforms in logarithmic variables: Journal of
Computational Physics, 29, pages 35–48; DOI: 10.1016/0021-9991(78)90107-9.

17

https://doi.org/10.1046/j.1365-8711.2000.03071.x
http://casa.colorado.edu/~ajsh/FFTLog
https://doi.org/10.1016/0021-9991(78)90107-9

pyfftlog Documentation, Release 0.2.0

18 Bibliography

Python Module Index

p
pyfftlog.pyfftlog, 4

19

pyfftlog Documentation, Release 0.2.0

20 Python Module Index

Index

F
fftl() (in module pyfftlog.pyfftlog), 7
fht() (in module pyfftlog.pyfftlog), 7
fhti() (in module pyfftlog.pyfftlog), 6
fhtq() (in module pyfftlog.pyfftlog), 8

K
krgood() (in module pyfftlog.pyfftlog), 8

P
pyfftlog.pyfftlog (module), 4

21

	pyfftlog - A python version of FFTLog
	Description of FFTLog from the FFTLog-Website
	Installation
	License, Citation, and Credits

	Bibliography
	Python Module Index
	Index

