

pyfftlog

Version: 0.2.1.dev13+gd09623c ~ Date: 31 January 2022

pyfftlog - A python version of FFTLog

This is a python version of the logarithmic FFT code FFTLog as presented in
Appendix B of Hamilton (2000) [http://dx.doi.org/10.1046/j.1365-8711.2000.03071.x] and published at
casa.colorado.edu/~ajsh/FFTLog [http://casa.colorado.edu/~ajsh/FFTLog].

A simple f2py-wrapper (fftlog) can be found on github.com/prisae/fftlog [https://github.com/prisae/fftlog]. Tests have shown that fftlog is a bit
faster than pyfftlog, but pyfftlog is easier to implement, as you only need
NumPy and SciPy, without the need to compile anything.

I hope that FFTLog will make it into SciPy in the future, which will make
this project redundant. (If you have the bandwidth and are willing to chip in
have a look at SciPy PR #7310 [https://github.com/scipy/scipy/pull/7310].)

Be aware that pyfftlog has not been tested extensively. It works fine for the
test from the original code, and my use case, which is pyfftlog.fftl with
mu=0.5 (sine-transform), q=0 (unbiased), k=1, kropt=1, and tdir=1
(forward). Please let me know if you encounter any issues.

	Documentation: https://pyfftlog.readthedocs.io

	Source Code: https://github.com/prisae/pyfftlog

Description of FFTLog from the FFTLog-Website

FFTLog is a set of fortran subroutines that compute the fast Fourier or Hankel
(= Fourier-Bessel) transform of a periodic sequence of logarithmically spaced
points.

FFTLog can be regarded as a natural analogue to the standard Fast Fourier
Transform (FFT), in the sense that, just as the normal FFT gives the exact (to
machine precision) Fourier transform of a linearly spaced periodic sequence, so
also FFTLog gives the exact Fourier or Hankel transform, of arbitrary order m,
of a logarithmically spaced periodic sequence.

FFTLog shares with the normal FFT the problems of ringing (response to sudden
steps) and aliasing (periodic folding of frequencies), but under appropriate
circumstances FFTLog may approximate the results of a continuous Fourier or
Hankel transform.

The FFTLog algorithm was originally proposed by Talman (1978) [http://dx.doi.org/10.1016/0021-9991(78)90107-9].

For the full documentation, see casa.colorado.edu/~ajsh/FFTLog [http://casa.colorado.edu/~ajsh/FFTLog].

Installation

You can install pyfftlog either via conda:

conda install -c conda-forge pyfftlog

or via pip:

pip install pyfftlog

License, Citation, and Credits

Released to the public domain under the CC0 1.0 License [http://creativecommons.org/publicdomain/zero/1.0].

All releases have a Zenodo-DOI, which can be found on 10.5281/zenodo.3830364 [https://doi.org/10.5281/zenodo.3830364].

Be kind and give credits by citing Hamilton (2000) [http://dx.doi.org/10.1046/j.1365-8711.2000.03071.x]. See the
references-section [https://pyfftlog.readthedocs.io/en/stable/references.html] in the manual for
full references.

Manual and API

pyfftlog – Python version of FFTLog

This is a Python version of the FFTLog Fortran code by Andrew Hamilton,
[Hami00].

The function scipy.special.loggamma [https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.special.loggamma.html#scipy.special.loggamma] replaces the file cdgamma.f in
the original code, and the functions scipy.fftpack.rfft() [https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.fftpack.rfft.html#scipy.fftpack.rfft] and
scipy.fftpack.irfft() [https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.fftpack.irfft.html#scipy.fftpack.irfft] replace the files drffti.f, drfftf.f, and
drfftb.f in the original code.

The original documentation has just been adjusted where necessary, and put into
a more pythonic format (e.g. using Parameters and Returns in the
documentation’).

What follows is the original documentation from the file `fftlog.f`:

THE FFTLog CODE

FFTLog computes the discrete Fast Fourier Transform or Fast Hankel Transform
(of arbitrary real index) of a periodic logarithmic sequence.

	Version of 13 Mar 2000.

	For more information about FFTLog, see http://casa.colorado.edu/~ajsh/FFTLog.

	Andrew J S Hamilton March 1999.

	Refs: [Talm78].

FFTLog computes a discrete version of the Hankel Transform (= Fourier-Bessel
Transform) with a power law bias \((k r)^q\)

(1)\[\tilde{a}(k) = \int^\infty_0 a(r) (k r)^q J_{\mu} (k r) k \,dr \, ,\]

(2)\[a(r) = \int^\infty_0 \tilde{a}(k) (k r)^{-q} J_{\mu} (k r) r \,dk \, ,\]

where \(J_{\mu}\) is the Bessel function of order \(\mu\). The index
\(\mu\) may be any real number, positive or negative.

The input array \(a_j\) is a periodic sequence of length \(n\),
uniformly logarithmically spaced with spacing \(dlnr\)

(3)\[a_j = a(r_j) \quad \text{at} \quad r_j = r_c \exp[(j-j_c) dlnr]\]

centred about the point \(r_c\). The central index \(j_c = (n+1)/2\) is
1/2 integral if \(n\) is even. Similarly, the output array
\(\tilde{a}_j\) is a periodic sequence of length \(n\), also uniformly
logarithmically spaced with spacing \(dlnr\)

(4)\[\tilde{a}_j = \tilde{a}(k_j) \quad \text{at} \quad
k_j = k_c \exp[(j-j_c) dlnr]\]

centred about the point \(k_c\).

The centre points \(r_c\) and \(k_c\) of the periodic intervals may be
chosen arbitrarily; but it would be normal to choose the product

(5)\[kr = k_c r_c = k_j r_{(n+1-j)} = k_{(n+1-j)} r_j\]

to be about 1 (or 2, or pi, to taste).

The FFTLog algorithm is (see [Hami00]):

	FFT the input array \(a_j\) to obtain the Fourier coefficients
\(c_m\) ;

	Multiply \(c_m\) by
\(u_m = (kr)^{- i 2 m \pi/(n dlnr)} U_{\mu}[q + i 2 m \pi/(n dlnr)]\)
where \(U_{\mu}(x) = 2^x \Gamma[(\mu+1+x)/2] / \Gamma[(\mu+1-x)/2]\) to
obtain \(c_m u_m\);

	FFT \(c_m u_m\) back to obtain the discrete Hankel transform
\(\tilde{a}_j\).

The Fourier sine and cosine transforms

(6)\[\tilde{A}(k) = \sqrt{2/\pi} \int^\infty_0 A(r) \sin(k r) \,dr \, ,\]

(7)\[\tilde{A}(k) = \sqrt{2/\pi} \int^\infty_0 A(r) \cos(k r) \,dr \, ,\]

may be regarded as special cases of the Hankel transform with \(\mu = 1/2\)
and \(-1/2\) since

(8)\[\sqrt{2/\pi} \sin(x) = \sqrt(x) J_{1/2} (x) \, ,\]

(9)\[\sqrt{2/\pi} \cos(x) = \sqrt(x) J_{-1/2} (x) \, .\]

The Fourier transforms may be done by making the substitutions

(10)\[A(r) = a(r) r^{q-1/2} \quad \text{and} \quad
\tilde{A}(k) = \tilde{a}(k) k^{-q-1/2}\]

and Hankel transforming \(a(r)\) with a power law bias \((k r)^q\)

(11)\[\tilde{a}(k) = \int^\infty_0 a(r) (k r)^q J_{\pm 1/2} (k r) k \,dr \, .\]

Different choices of power law bias \(q\) lead to different discrete
Fourier transforms of \(A(r)\), because the assumption of periodicity of
\(a(r) = A(r) r^{-q+(1/2)}\) is different for different \(q\).

If \(A(r)\) is a power law, \(A(r)\) proportional to
\(r^{q-(1/2)}\), then applying a bias \(q\) yields a discrete Fourier
transform \(\tilde{A}(k)\) that is exactly equal to the continuous Fourier
transform, because then \(a(r)\) is a constant, which is a periodic
function.

The Hankel transform

(12)\[\tilde{A}(k) = \int^\infty_0 A(r) J_{\mu} (k r) k \,dr\]

may be done by making the substitutions

(13)\[A(r) = a(r) r^q \quad \text{and} \quad \tilde{A}(k) = \tilde{a}(k) k^{-q}\]

and Hankel transforming \(a(r)\) with a power law bias \((k r)^q\)

(14)\[\tilde{a}(k) = \int^\infty_0 a(r) (k r)^q J_{\mu} (k r) k \,dr \, .\]

Different choices of power law bias \(q\) lead to different discrete Hankel
transforms of \(A(r)\), because the assumption of periodicity of
\(a(r) = A(r) r^{-q}\) is different for different \(q\).

If \(A(r)\) is a power law, \(A(r)\) proportional to \(r^q\), then
applying a bias \(q\) yields a discrete Hankel transform
\(\tilde{A}(k)\) that is exactly equal to the continuous Hankel transform,
because then \(a(r)\) is a constant, which is a periodic function.

There are five routines:

Comments in the subroutines contain further details.

	subroutine `fhti(n,mu,q,dlnr,kr,kropt,wsave,ok)`
is an initialization routine.

	subroutine `fftl(n,a,rk,dir,wsave)`
computes the discrete Fourier sine or cosine transform of a logarithmically
spaced periodic sequence. This is a driver routine that calls fhtq.

	subroutine `fht(n,a,dir,wsave)`
computes the discrete Hankel transform of a logarithmically spaced periodic
sequence. This is a driver routine that calls fhtq.

	subroutine `fhtq(n,a,dir,wsave)`
computes the biased discrete Hankel transform of a logarithmically spaced
periodic sequence. This is the basic FFTLog routine.

	real*8 function `krgood(mu,q,dlnr,kr)`
takes an input kr and returns the nearest low-ringing kr. This is an
optional routine called by fhti.

END of the original documentation from the file `fftlog.f`

	
pyfftlog.pyfftlog.fhti(n, mu, dlnr, q=0, kr=1, kropt=0)[source]

	Initialize the working array xsave used by fftl, fht, and fhtq.

fhti initializes the working array xsave used by fftl, fht, and fhtq. fhti
need be called once, whereafter fftl, fht, or fhtq may be called many
times, as long as n, mu, q, dlnr, and kr remain unchanged. fhti should be
called each time n, mu, q, dlnr, or kr is changed. The work array xsave
should not be changed between calls to fftl, fht, or fhtq.

	Parameters

	
	nint

	Number of points in the array to be transformed; n may be any positive
integer, but the FFT routines run fastest if n is a product of small
primes 2, 3, 5.

	mufloat

	Index of J_mu in Hankel transform; mu may be any real number, positive
or negative.

	dlnrfloat

	Separation between natural log of points; dlnr may be positive or
negative.

	qfloat, optional

	Exponent of power law bias; q may be any real number, positive or
negative. If in doubt, use q = 0, for which case the Hankel transform
is orthogonal, i.e. self-inverse, provided also that, for n even, kr is
low-ringing. Non-zero q may yield better approximations to the
continuous Hankel transform for some functions.
Defaults to 0 (unbiased).

	krfloat, optional

	k_c r_c where c is central point of array
= k_j r_(n+1-j) = k_(n+1-j) r_j .
Normally one would choose kr to be about 1 (default) (or 2, or pi, to
taste).

	kroptint, optional; {0, 1, 2, 3}

	
	0 to use input kr as is (default);

	1 to change kr to nearest low-ringing kr, quietly;

	2 to change kr to nearest low-ringing kr, verbosely;

	3 for option to change kr interactively.

	Returns

	
	krfloat, optional

	kr, adjusted depending on kropt.

	xsavearray

	Working array used by fftl, fht, and fhtq. Dimension:
- for q = 0 (unbiased transform): n+3
- for q != 0 (biased transform): 1.5*n+4
If odd, last element is not needed.

	
pyfftlog.pyfftlog.fftl(a, xsave, rk=1, tdir=1)[source]

	Logarithmic fast Fourier transform FFTLog.

This is a driver routine that calls fhtq().

fftl computes a discrete version of the Fourier sine (if mu = 1/2) or
cosine (if mu = -1/2) transform

\[\tilde{A}(k) = \sqrt{2/\pi} \int^\infty_0 A(r) \sin(k r) \,dr \, ,\]

\[\tilde{A}(k) = \sqrt{2/\pi} \int^\infty_0 A(r) \cos(k r) \,dr \, ,\]

by making the substitutions

\[A(r) = a(r) r^{q-1/2} \quad \text{and} \quad
\tilde{A}(k) = \tilde{a}(k) k^{-q-1/2}\]

and applying a biased Hankel transform to \(a(r)\).

The steps are:
1. \(a(r) = A(r) r^[-dir (q-0.5)]\)
2. call fhtq to transform \(a(r) \rightarrow \tilde{a}(k)\)
3. \(\tilde{A}(k) = \tilde{a}(k) k^[-dir (q+0.5)]\)

fhti must be called before the first call to fftl, with mu=1/2 for a
sine transform, or mu=-1/2 for a cosine transform.

A call to fftl with dir=1 followed by a call to fftl with dir=-1
(and rk unchanged), or vice versa, leaves the array a unchanged.

	Parameters

	
	aarray

	Array A(r) to transform: a(j) is A(r_j) at r_j = r_c exp[(j-jc) dlnr],
where jc = (n+1)/2 = central index of array.

	xsavearray

	Working array set up by fhti.

	rkfloat, optional

	r_c/k_c = r_j/k_j (a constant, the same constant for any j); rk is not
(necessarily) the same quantity as kr. rk is used only to multiply the
output array by sqrt(rk)^dir, so if you want to do the normalization
later, or you don’t care about the normalization, you can set rk = 1.
Defaults to 1.

	tdirint, optional; {1, -1}

	
	1 for forward transform (default),

	-1 for backward transform.

A backward transform (dir = -1) is the same as a forward transform with
q -> -q and rk -> 1/rk, for any kr if n is odd, for low-ringing kr if n
is even.

	Returns

	
	aarray

	Transformed array Ã(k): a(j) is Ã(k_j) at k_j = k_c exp[(j-jc) dlnr].

	
pyfftlog.pyfftlog.fht(a, xsave, tdir=1)[source]

	Fast Hankel transform FHT.

This is a driver routine that calls fhtq().

fht computes a discrete version of the Hankel transform

\[\tilde{A}(k) = \int^\infty_0 A(r) J_{\mu} (k r) k \,dr \,\]

by making the substitutions

\[A(r) = a(r) r^q \quad \text{and} \quad
\tilde{A}(k) = \tilde{a}(k) k^{-q}\]

and applying a biased Hankel transform to \(a(r)\).

The steps are:
1. \(a(r) = A(r) r^{-dir q}\)
2. call fhtq to transform \(a(r) \rightarrow \tilde{a}(k)\)
3. \(\tilde{A}(k) = \tilde{a}(k) k^{-dir q}\)

fhti must be called before the first call to fht.

A call to fht with dir=1 followed by a call to fht with dir=-1, or
vice versa, leaves the array a unchanged.

	Parameters

	
	aarray

	Array A(r) to transform: a(j) is A(r_j) at r_j = r_c exp[(j-jc) dlnr],
where jc = (n+1)/2 = central index of array.

	xsavearray

	Working array set up by fhti.

	tdirint, optional; {1, -1}

	
	1 for forward transform (default),

	-1 for backward transform.

A backward transform (dir = -1) is the same as a forward transform with
q -> -q, for any kr if n is odd, for low-ringing kr if n is even.

	Returns

	
	aarray

	Transformed array Ã(k): a(j) is Ã(k_j) at k_j = k_c exp[(j-jc) dlnr].

	
pyfftlog.pyfftlog.fhtq(a, xsave, tdir=1)[source]

	Kernel routine of FFTLog.

This is the basic FFTLog routine.

fhtq computes a discrete version of the biased Hankel transform

\[\tilde{a}(k) = \int^\infty_0 a(r) (k r)^q J_{\mu} (k r) k \,dr \, .\]

fhti must be called before the first call to fhtq.

A call to fhtq with dir=1 followed by a call to fhtq with dir=-1,
or vice versa, leaves the array a unchanged.

	Parameters

	
	aarray

	Periodic array a(r) to transform: a(j) is a(r_j) at r_j = r_c
exp[(j-jc) dlnr] where jc = (n+1)/2 = central index of array.

	xsavearray

	Working array set up by fhti.

	tdirint, optional; {1, -1}

	
	1 for forward transform (default),

	-1 for backward transform.

A backward transform (dir = -1) is the same as a forward transform with
q -> -q, for any kr if n is odd, for low-ringing kr if n is even.

	Returns

	
	aarray

	Transformed periodic array ã(k): a(j) is ã(k_j) at k_j = k_c exp[(j-jc)
dlnr].

	
pyfftlog.pyfftlog.krgood(mu, q, dlnr, kr)[source]

	Return optimal kr.

Use of this routine is optional.

Choosing kr so that

\[(k r)^{- i pi/dlnr} U_{\mu}(q + i pi/dlnr)\]

is real may reduce ringing of the discrete Hankel transform, because it
makes the transition of this function across the period boundary smoother.

	Parameters

	
	mufloat

	index of J_mu in Hankel transform; mu may be any real number, positive
or negative.

	qfloat

	exponent of power law bias; q may be any real number, positive or
negative. If in doubt, use q = 0, for which case the Hankel transform
is orthogonal, i.e. self-inverse, provided also that, for n even, kr is
low-ringing. Non-zero q may yield better approximations to the
continuous Hankel transform for some functions.

	dlnrfloat

	separation between natural log of points; dlnr may be positive or
negative.

	krfloat, optional

	k_c r_c where c is central point of array
= k_j r_(n+1-j) = k_(n+1-j) r_j .
Normally one would choose kr to be about 1 (default) (or 2, or pi, to
taste).

	Returns

	
	krgoodfloat

	low-ringing value of kr nearest to input kr. ln(krgood) is always
within dlnr/2 of ln(kr).

Examples

[image: FFTLog-Test]

FFTLog-Test

[image: Geophysical Electromagnetic modelling]

Geophysical Electromagnetic modelling

Examples contributed by users

[image: Sine Transform]

Sine Transform

Download all examples in Python source code: examples_python.zip

Download all examples in Jupyter notebooks: examples_jupyter.zip

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Click here
to download the full example code

FFTLog-Test

This example is a translation of fftlogtest.f from the Fortran package
FFTLog, which was presented in Appendix B of [Hami00] and published at
http://casa.colorado.edu/~ajsh/FFTLog. It serves as an example for the python
package pyfftlog (which is a Python version of FFTLog), in the same manner
as the original file fftlogtest.f serves as an example for Fortran package
FFTLog.

What follows is the original documentation from the file `fftlogtest.f`:

This is fftlogtest.f

This is a simple test program to illustrate how FFTLog works. The test
transform is:

(1)\[\int^\infty_0 r^{\mu+1} \exp\left(-\frac{r^2}{2} \right)\
J_\mu(k, r)\ k\ {\rm d}r = k^{\mu+1} \exp\left(-\frac{k^2}{2}
\right)\]

Disclaimer

FFTLog does NOT claim to provide the most accurate possible solution of the
continuous transform (which is the stated aim of some other codes). Rather,
FFTLog claims to solve the exact discrete transform of a
logarithmically-spaced periodic sequence. If the periodic interval is wide
enough, the resolution high enough, and the function well enough behaved
outside the periodic interval, then FFTLog may yield a satisfactory
approximation to the continuous transform.

Observe:

	How the result improves as the periodic interval is enlarged. With the
normal FFT, one is not used to ranges orders of magnitude wide, but this is
how FFTLog prefers it.

	How the result improves as the resolution is increased. Because the function
is rather smooth, modest resolution actually works quite well here.

	That the central part of the transform is more reliable than the outer
parts. Experience suggests that a good general strategy is to double the
periodic interval over which the input function is defined, and then to
discard the outer half of the transform.

	That the best bias exponent seems to be \(q = 0\).

	That for the critical index \(\mu = -1\), the result seems to be offset
by a constant from the ‘correct’ answer.

	That the result grows progressively worse as mu decreases below -1.

The analytic integral above fails for \(\mu \le -1\), but FFTLog still
returns answers. Namely, FFTLog returns the analytic continuation of the
discrete transform. Because of ambiguity in the path of integration around
poles, this analytic continuation is liable to differ, for \(\mu \le -1\),
by a constant from the ‘correct’ continuation given by the above equation.

FFTLog begins to have serious difficulties with aliasing as \(\mu\)
decreases below \(-1\), because then \(r^{\mu+1} \exp(-r^2/2)\) is far
from resembling a periodic function. You might have thought that it would help
to introduce a bias exponent \(q = \mu\), or perhaps \(q = \mu+1\), or
more, to make the function \(a(r) = A(r) r^{-q}\) input to fhtq more
nearly periodic. In practice a nonzero \(q\) makes things worse.

A symmetry argument lends support to the notion that the best exponent here
should be \(q = 0,\) as empirically appears to be true. The symmetry
argument is that the function \(r^{\mu+1} \exp(-r^2/2)\) happens to be the
same as its transform \(k^{\mu+1} \exp(-k^2/2)\). If the best bias exponent
were q in the forward transform, then the best exponent would be \(-q\)
that in the backward transform; but the two transforms happen to be the same in
this case, suggesting \(q = -q\), hence \(q = 0\).

This example illustrates that you cannot always tell just by looking at a
function what the best bias exponent \(q\) should be. You also have to look
at its transform. The best exponent \(q\) is, in a sense, the one that
makes both the function and its transform look most nearly periodic.

import pyfftlog
import numpy as np
import matplotlib.pyplot as plt

Define the parameters you wish to use

The presets are the Reasonable choices of parameters from fftlogtest.f.

Range of periodic interval
logrmin = -4
logrmax = 4

Number of points (Max 4096)
n = 64

Order mu of Bessel function
mu = 0

Bias exponent: q = 0 is unbiased
q = 0

Sensible approximate choice of k_c r_c
kr = 1

Tell fhti to change kr to low-ringing value
WARNING: kropt = 3 will fail, as interaction is not supported
kropt = 1

Forward transform (changed from dir to tdir, as dir is a python fct)
tdir = 1

Computation related to the logarithmic spacing

Central point log10(r_c) of periodic interval
logrc = (logrmin + logrmax)/2

print(f"Central point of periodic interval at log10(r_c) = {logrc}")

Central index (1/2 integral if n is even)
nc = (n + 1)/2.0

Log-spacing of points
dlogr = (logrmax - logrmin)/n
dlnr = dlogr*np.log(10.0)

Out:

Central point of periodic interval at log10(r_c) = 0.0

Compute input function: \(r^{\mu+1}\exp\left(-\frac{r^2}{2}\right)\)

r = 10**(logrc + (np.arange(1, n+1) - nc)*dlogr)
ar = r**(mu + 1)*np.exp(-r**2/2.0)

Initialize FFTLog transform - note fhti resets kr

kr, xsave = pyfftlog.fhti(n, mu, dlnr, q, kr, kropt)
print(f"pyfftlog.fhti: new kr = {kr}")

Out:

pyfftlog.fhti: new kr = 0.9535389675791917

Call pyfftlog.fht (or pyfftlog.fhtl)

logkc = np.log10(kr) - logrc
print(f"Central point in k-space at log10(k_c) = {logkc}")

rk = r_c/k_c
rk = 10**(logrc - logkc)

Transform
ak = pyfftlog.fftl(ar.copy(), xsave, rk, tdir)
ak = pyfftlog.fht(ar.copy(), xsave, tdir)

Out:

Central point in k-space at log10(k_c) = -0.020661554260541743

Compute Output function: \(k^{\mu+1}\exp\left(-\frac{k^2}{2}\right)\)

k = 10**(logkc + (np.arange(1, n+1) - nc)*dlogr)
theo = k**(mu + 1)*np.exp(-k**2/2.0)

Plot result

plt.figure()

Input
ax1 = plt.subplot(121)
plt.title(r'$r^{\mu+1}\ \exp(-r^2/2)$')
plt.xlabel('r')

plt.loglog(r, ar, 'k', lw=2)

plt.grid(axis='y', c='0.9')

Transformed result
ax2 = plt.subplot(122, sharey=ax1)
plt.title(r'$k^{\mu+1} \exp(-k^2/2)$')
plt.xlabel('k')

plt.loglog(k, theo, 'k', lw=2, label='Theoretical')
plt.loglog(k, ak, 'r--', lw=2, label='FFTLog')

plt.legend()
plt.ylim([1e-8, 1e1])

ax2.yaxis.tick_right()
ax2.yaxis.set_label_position("right")
plt.grid(axis='y', c='0.9')

Switch off spines
ax1.spines['top'].set_visible(False)
ax1.spines['right'].set_visible(False)
ax2.spines['top'].set_visible(False)
ax2.spines['left'].set_visible(False)
plt.tight_layout(rect=[0, 0, 1, .9])

Main title
plt.suptitle(r"$\int_0^\infty r^{\mu+1}\ \exp(-r^2/2)\ J_\mu(k,r)\ " +
 r"k\ {\rm d}r = k^{\mu+1} \exp(-k^2/2)$", y=0.98)

plt.show()

[image: $\int_0^\infty r^{\mu+1}\ \exp(-r^2/2)\ J_\mu(k,r)\ k\ {\rm d}r = k^{\mu+1} \exp(-k^2/2)$, $r^{\mu+1}\ \exp(-r^2/2)$, $k^{\mu+1} \exp(-k^2/2)$]

Print values

print(' k a(k) k^(mu+1) exp(-k^2/2)')
print('--')
for i in range(n):
 print(f"{k[i]:18.6e} {ak[i]:18.6e} {theo[i]:18.6e}")

Out:

 k a(k) k^(mu+1) exp(-k^2/2)
--
 1.101130e-04 6.332603e-05 1.101130e-04
 1.468380e-04 9.168618e-05 1.468380e-04
 1.958116e-04 1.374282e-04 1.958116e-04
 2.611190e-04 2.131954e-04 2.611190e-04
 3.482078e-04 3.318802e-04 3.482077e-04
 4.643425e-04 4.923984e-04 4.643425e-04
 6.192107e-04 6.460278e-04 6.192106e-04
 8.257307e-04 7.968931e-04 8.257304e-04
 1.101130e-03 1.113736e-03 1.101129e-03
 1.468380e-03 1.464233e-03 1.468378e-03
 1.958116e-03 1.959475e-03 1.958112e-03
 2.611190e-03 2.610678e-03 2.611181e-03
 3.482078e-03 3.482260e-03 3.482056e-03
 4.643425e-03 4.643299e-03 4.643375e-03
 6.192107e-03 6.191999e-03 6.191988e-03
 8.257307e-03 8.257056e-03 8.257026e-03
 1.101130e-02 1.101057e-02 1.101063e-02
 1.468380e-02 1.468230e-02 1.468222e-02
 1.958116e-02 1.957729e-02 1.957741e-02
 2.611190e-02 2.610314e-02 2.610300e-02
 3.482078e-02 3.479950e-02 3.479967e-02
 4.643425e-02 4.638444e-02 4.638422e-02
 6.192107e-02 6.180220e-02 6.180247e-02
 8.257307e-02 8.229239e-02 8.229205e-02
 1.101130e-01 1.094470e-01 1.094474e-01
 1.468380e-01 1.452640e-01 1.452635e-01
 1.958116e-01 1.920928e-01 1.920934e-01
 2.611190e-01 2.523680e-01 2.523671e-01
 3.482078e-01 3.277241e-01 3.277250e-01
 4.643425e-01 4.168889e-01 4.168871e-01
 6.192107e-01 5.111853e-01 5.111866e-01
 8.257307e-01 5.871956e-01 5.871927e-01
 1.101130e+00 6.005500e-01 6.005516e-01
 1.468380e+00 4.996049e-01 4.996187e-01
 1.958116e+00 2.879340e-01 2.879045e-01
 2.611190e+00 8.632888e-02 8.634968e-02
 3.482078e+00 8.102022e-03 8.108819e-03
 4.643425e+00 1.180344e-04 9.656964e-05
 6.192107e+00 -1.553139e-05 2.923736e-08
 8.257307e+00 7.225353e-06 1.291402e-14
 1.101130e+01 -2.588950e-06 5.164519e-26
 1.468380e+01 7.719794e-07 2.222595e-46
 1.958116e+01 1.586977e-07 1.078537e-82
 2.611190e+01 -1.874092e-07 2.285953e-147
 3.482078e+01 5.576689e-07 1.793712e-262
 4.643425e+01 -1.317041e-07 0.000000e+00
 6.192107e+01 6.415736e-07 0.000000e+00
 8.257307e+01 1.351283e-07 0.000000e+00
 1.101130e+02 7.997181e-07 0.000000e+00
 1.468380e+02 5.394094e-07 0.000000e+00
 1.958116e+02 1.165867e-06 0.000000e+00
 2.611190e+02 1.176786e-06 0.000000e+00
 3.482078e+02 1.889416e-06 0.000000e+00
 4.643425e+02 2.248731e-06 0.000000e+00
 6.192107e+02 3.228937e-06 0.000000e+00
 8.257307e+02 4.113223e-06 0.000000e+00
 1.101130e+03 5.651921e-06 0.000000e+00
 1.468380e+03 7.408687e-06 0.000000e+00
 1.958116e+03 1.001142e-05 0.000000e+00
 2.611190e+03 1.330606e-05 0.000000e+00
 3.482078e+03 1.792186e-05 0.000000e+00
 4.643425e+03 2.410633e-05 0.000000e+00
 6.192107e+03 3.277422e-05 0.000000e+00
 8.257307e+03 4.510046e-05 0.000000e+00

Total running time of the script: (0 minutes 0.595 seconds)

Download Python source code: fftlogtest.py

Download Jupyter notebook: fftlogtest.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Click here
to download the full example code

Geophysical Electromagnetic modelling

In this example we use pyfftlog to obtain time-domain EM data from
frequency-domain data and vice versa. We do this by using analytical
halfspace solution in both domains, and comparing the transformed responses to
the true result. The analytical halfspace solutions are computed using
empymod (see https://empymod.github.io).

import empymod
import pyfftlog
import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import InterpolatedUnivariateSpline as iuSpline

Model and Survey parameters

Impulse response (in the time domain)
signal = 0

x-directed electric source and receiver point-dipoles
ab = 11

We use the same range of times (s) and frequencies (Hz)
ftpts = np.logspace(-4, 4, 301)

Source and receiver
src = [0, 0, 100] # At the origin, 100 m below surface
rec = [6000, 0, 200] # At an inline offset of 6 km, 200 m below surface

Resistivity
depth = [0] # Interface at z = 0, default for empymod.analytical
res = [2e14, 1] # Horizontal resistivity [air, subsurface]
aniso = [1, 2] # Anisotropy [air, subsurface]

Collect parameters
analytical = {
 'src': src,
 'rec': rec,
 'res': res[1],
 'aniso': aniso[1],
 'solution': 'dhs', # Diffusive half-space solution
 'verb': 2,
 'ab': ab,
}

dipole = {
 'src': src,
 'rec': rec,
 'depth': depth,
 'res': res,
 'aniso': aniso,
 'ht': 'dlf',
 'verb': 2,
 'ab': ab,
}

Analytical solutions

Frequency Domain
f_ana = empymod.analytical(**analytical, freqtime=ftpts)

Time Domain
t_ana = empymod.analytical(**analytical, freqtime=ftpts, signal=signal)

Out:

:: empymod END; runtime = 0:00:00.002148 ::

:: empymod END; runtime = 0:00:00.001233 ::

FFTLog

FFTLog parameters
pts_per_dec = 5 # Increase if not precise enough
add_dec = [-2, 2] # e.g. [-2, 2] to add 2 decades on each side
q = 0 # -1 - +1; can improve results

Compute minimum and maximum required inputs
rmin = np.log10(1/ftpts.max()) + add_dec[0]
rmax = np.log10(1/ftpts.min()) + add_dec[1]
n = np.int(rmax - rmin)*pts_per_dec

Pre-allocate output
f_resp = np.zeros(ftpts.shape, dtype=complex)

Loop over Sine, Cosine transform.
for mu in [0.5, -0.5]:

 # Central point log10(r_c) of periodic interval
 logrc = (rmin + rmax)/2

 # Central index (1/2 integral if n is even)
 nc = (n + 1)/2.

 # Log spacing of points
 dlogr = (rmax - rmin)/n
 dlnr = dlogr*np.log(10.)

 # Compute required input x-values
 pts_req = 10**(logrc + (np.arange(1, n+1) - nc)*dlogr)/2/np.pi

 # Initialize FFTLog
 kr, xsave = pyfftlog.fhti(n, mu, dlnr, q, kr=1, kropt=1)

 # Compute pts_out with adjusted kr
 logkc = np.log10(kr) - logrc
 pts_out = 10**(logkc + (np.arange(1, n+1) - nc)*dlogr)

 # rk = r_c/k_r; adjust for Fourier transform scaling
 rk = 10**(logrc - logkc)*np.pi/2

 # Compute required times/frequencies with the analytical solution
 t2f_t_resp = empymod.analytical(**analytical, freqtime=pts_req,
 signal=signal)
 f2t_f_resp = empymod.analytical(**analytical, freqtime=pts_req)

 # Carry out FFTLog
 t2f_f_coarse = pyfftlog.fftl(t2f_t_resp, xsave.copy(), rk, 1)
 if mu > 0:
 f2t_t_coarse = pyfftlog.fftl(f2t_f_resp.imag, xsave.copy(), rk, 1)
 else:
 f2t_t_coarse = pyfftlog.fftl(f2t_f_resp.real, xsave.copy(), rk, 1)

 # Interpolate for required frequencies/times
 t2f_f_spline = iuSpline(np.log(pts_out), t2f_f_coarse)
 f2t_t_spline = iuSpline(np.log(pts_out), f2t_t_coarse)

 if mu > 0:
 f_resp += -1j*t2f_f_spline(np.log(ftpts))/np.pi/2
 t_resp_sin = -f2t_t_spline(np.log(ftpts))/np.pi*2
 else:
 f_resp += t2f_f_spline(np.log(ftpts))/np.pi/2
 t_resp_cos = f2t_t_spline(np.log(ftpts))/np.pi*2

Out:

/home/docs/checkouts/readthedocs.org/user_builds/pyfftlog/checkouts/latest/examples/geophysical_em.py:86: DeprecationWarning: `np.int` is a deprecated alias for the builtin `int`. To silence this warning, use `int` by itself. Doing this will not modify any behavior and is safe. When replacing `np.int`, you may wish to use e.g. `np.int64` or `np.int32` to specify the precision. If you wish to review your current use, check the release note link for additional information.
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
 n = np.int(rmax - rmin)*pts_per_dec

:: empymod END; runtime = 0:00:00.000758 ::

:: empymod END; runtime = 0:00:00.001016 ::

:: empymod END; runtime = 0:00:00.000837 ::

:: empymod END; runtime = 0:00:00.000978 ::

Comparison

fig, (ax0, ax1) = plt.subplots(1, 2, figsize=(9, 4))

TIME DOMAIN
ax0.set_title(r'Frequency domain')
ax0.set_xlabel('Frequency (Hz)')
ax0.set_ylabel('Amplitude (V/m)')
ax0.semilogx(ftpts, f_ana.real, 'k-', label='Analytical')
ax0.semilogx(ftpts, f_ana.imag, 'k-')
ax0.semilogx(ftpts, f_resp.real, 'C3--', label=r'FFTLog, $\mu=-0.5$')
ax0.semilogx(ftpts, f_resp.imag, 'C2--', label=r'FFTLog, $\mu=+0.5$')
ax0.legend(loc='best')
ax0.grid(which='both', c='.95')

TIME DOMAIN
ax1.set_title(r'Time domain')
ax1.set_xlabel('Time (s)')
ax1.set_ylabel('Amplitude (V/m)')
ax1.semilogx(ftpts, t_ana, 'k', label='Analytical')
ax1.semilogx(ftpts, t_resp_cos, 'C3--', label=r'FFTLog, $\mu=-0.5$')
ax1.semilogx(ftpts, t_resp_sin, 'C2-.', label=r'FFTLog, $\mu=+0.5$')
ax1.legend(loc='best')
ax1.yaxis.set_label_position("right")
ax1.yaxis.tick_right()
ax1.grid(which='both', c='.95')

fig.tight_layout()
fig.show()

[image: Frequency domain, Time domain]Total running time of the script: (0 minutes 0.561 seconds)

Download Python source code: geophysical_em.py

Download Jupyter notebook: geophysical_em.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Click here
to download the full example code

Sine Transform

Contributed by @ShazAlvi [https://github.com/ShazAlvi].

This is a simple test program to illustrate how the sine (or cosine as it works
basically the same way) Fourier transform works using FFTLog. The test
provides as input as sine function and performs the sine Fourier transform. The
input function is then recovered by performing an inverse Fourier transform.
The inverse is performed using the following integral,

(1)\[F(t) = \sqrt{\frac{\pi}{2}}\int^\infty_0 A(f)\ \sin(ft) \ \text{d}f \ .\]

import pyfftlog
import numpy as np
import scipy.integrate
import matplotlib.pyplot as plt

Define the parameters you wish to use

The presets are the Reasonable choices of parameters from fftlogtest.f.

Range of periodic interval
logtmin = -3
logtmax = 0.798 #2pi
5(2pi) #Longer range in r gives you a better reconstruction. 10\pi will give
you a better reconstruction than 2\pi.
logtmax = 1.497
Number of points (Max 4096)
1000 points give you a fairly smooth distribution of af in frequency, f.
However you can get a good, working fit for 300 points as well.
n = 1000

Order mu of Bessel function
mu = 0.5 # Choose -0.5 for cosine fourier transform

Bias exponent: q = 0 is unbiased
The unbiased transforms give better results as far as I checked.
q = 0
Sensible approximate choice of f_c t_c
The output and the reconstruction is sensitive to the choice of this value
This value is found by trial and error. In this example, the input function
is a simple sine function which is not smooth in frequency space (as it
only has one frequency) because of this reason a better value of this
quantity is not found by the function fhti. For functions smooth
in both time and frequency domain, the fhti should return the best
value of the f_c t_c.

ft = 0.016

Tell fhti to change ft to low-ringing value
WARNING: kropt = 3 will fail, as interaction is not supported
ftopt = 1

Forward transform (changed from dir to tdir, as dir is a python fct)
tdir = 1

Computation related to the logarithmic spacing

Central point log10(t_c) of periodic interval
logtc = (logtmin + logtmax)/2

print(f"Central point of periodic interval at log10(t_c) = {logtc}")

Central index (1/2 integral if n is even)
nc = (n + 1)/2.0

Log-spacing of points
dlogt = (logtmax - logtmin)/n

dlnr = dlogt*np.log(10.0)

Out:

Central point of periodic interval at log10(t_c) = -0.7515

Compute input function: \(\sin(t)\)

t = 10**(logtc + (np.arange(1, n+1) - nc)*dlogt)
a_t = np.sin(t)

Initialize FFTLog transform - note fhti resets ft

ft, xsave = pyfftlog.fhti(n, mu, dlnr, q, ft, ftopt)

Call pyfftlog.fhtl

logfc = np.log10(ft) - logtc

Fourier sine Transform
a_f = pyfftlog.fftl(a_t.copy(), xsave, np.sqrt(2/np.pi), tdir)
Notice that np.sqrt(2/np.pi) is the normalization factor for the transform
Reconstruct the input function by taking the inverse fourier transform as
given in the description
f = 10**(logfc + (np.arange(1, n+1) - nc)*dlogt)
Array to store the reconstructed function for each value of t
Recon_Fun = np.zeros((len(t)))
for i in range(len(t)):
 Recon_Fun[i] = (np.sqrt(2/np.pi)**-1) * \
 scipy.integrate.trapz(f, a_f*np.sin(t[i]*f))

Plotting the input function and the reconstructed input function and also
the distribution of the a(f) vs f.
plt.figure()

ax1 = plt.subplot(121)
plt.title(r'Frequency domain')
plt.xlabel('f')
plt.ylabel(r'$a_f(f)$')
plt.semilogx(f, a_f, 'k')

ax2 = plt.subplot(122)
plt.title('Time domain')
plt.xlabel("t")
plt.ylabel("sin(t)")
plt.semilogx(t, a_t, lw=2, label=r'$\sin(t)$')
plt.semilogx(t, -Recon_Fun, '--', label='Reconstructed')
plt.legend()

plt.tight_layout()
plt.show()

[image: Frequency domain, Time domain]Total running time of the script: (0 minutes 0.286 seconds)

Download Python source code: sinetransform.py

Download Jupyter notebook: sinetransform.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

References

	Hami00

	Hamilton, A. J. S., 2000, Uncorrelated modes of the non-linear
power spectrum: Monthly Notices of the Royal Astronomical Society, 312,
pages 257–284; DOI: 10.1046/j.1365-8711.2000.03071.x [https://doi.org/10.1046/j.1365-8711.2000.03071.x]; Website of FFTLog:
casa.colorado.edu/~ajsh/FFTLog [http://casa.colorado.edu/~ajsh/FFTLog].

	Talm78

	Talman, J. D., 1978, Numerical Fourier and Bessel transforms in
logarithmic variables: Journal of Computational Physics, 29, pages 35–48;
DOI: 10.1016/0021-9991(78)90107-9 [https://doi.org/10.1016/0021-9991(78)90107-9].

Changelog

v0.2.0 : First packaged release

2020-05-16

First packaged release on PyPi and conda-forge. This includes:

	Re-structuring the repo.

	Add a proper documentation, https://pyfftlog.readthedocs.io, convert
plain-text math into LaTeX, and add a reference section.

	Add example notebook as sphinx-gallery to docs.

	Add tests and CI on Travis, https://travis-ci.org/github/prisae/pyfftlog.

	Link to Zenodo, https://zenodo.org/record/3830366.

	PEP8 checking and coveralls (https://coveralls.io/github/prisae/pyfftlog).

	Add the relevant badges to README.

v0.1.1 : Bugfix uneven values

2019-08-16

	Small bugfix for uneven values.

v0.1.0 : Initial upload to GitHub

2016-12-09

	Initially working version uploaded to GitHub.

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pyfftlog	

 	
 	
 pyfftlog.pyfftlog	

Index

 F
 | K
 | P

F

 	
 	fftl() (in module pyfftlog.pyfftlog)

 	fht() (in module pyfftlog.pyfftlog)

 	
 	fhti() (in module pyfftlog.pyfftlog)

 	fhtq() (in module pyfftlog.pyfftlog)

K

 	
 	krgood() (in module pyfftlog.pyfftlog)

P

 	
 	pyfftlog.pyfftlog (module)

 All modules for which code is available

	pyfftlog.pyfftlog

 Source code for pyfftlog.pyfftlog

r"""

`pyfftlog` -- Python version of FFTLog
======================================

This is a Python version of the FFTLog Fortran code by Andrew Hamilton,
[Hami00]_.

The function :obj:`scipy.special.loggamma` replaces the file `cdgamma.f` in
the original code, and the functions :func:`scipy.fftpack.rfft` and
:func:`scipy.fftpack.irfft` replace the files `drffti.f`, `drfftf.f`, and
`drfftb.f` in the original code.

The original documentation has just been adjusted where necessary, and put into
a more pythonic format (e.g. using `Parameters` and `Returns` in the
documentation').

What follows is the original documentation from the file `fftlog.f`:

THE FFTLog CODE

FFTLog computes the discrete Fast Fourier Transform or Fast Hankel Transform
(of arbitrary real index) of a periodic logarithmic sequence.

- Version of 13 Mar 2000.
- For more information about FFTLog, see http://casa.colorado.edu/~ajsh/FFTLog.
- Andrew J S Hamilton March 1999.
- Refs: [Talm78]_.

FFTLog computes a discrete version of the Hankel Transform (= Fourier-Bessel
Transform) with a power law bias :math:`(k r)^q`

.. math::
 :label: ham1

 \tilde{a}(k) = \int^\infty_0 a(r) (k r)^q J_{\mu} (k r) k \,dr \, ,

.. math::
 :label: ham2

 a(r) = \int^\infty_0 \tilde{a}(k) (k r)^{-q} J_{\mu} (k r) r \,dk \, ,

where :math:`J_{\mu}` is the Bessel function of order :math:`\mu`. The index
:math:`\mu` may be any real number, positive or negative.

The input array :math:`a_j` is a periodic sequence of length :math:`n`,
uniformly logarithmically spaced with spacing :math:`dlnr`

.. math::
 :label: ham3

 a_j = a(r_j) \quad \text{at} \quad r_j = r_c \exp[(j-j_c) dlnr]

centred about the point :math:`r_c`. The central index :math:`j_c = (n+1)/2` is
1/2 integral if :math:`n` is even. Similarly, the output array
:math:`\tilde{a}_j` is a periodic sequence of length :math:`n`, also uniformly
logarithmically spaced with spacing :math:`dlnr`

.. math::
 :label: ham4

 \tilde{a}_j = \tilde{a}(k_j) \quad \text{at} \quad
 k_j = k_c \exp[(j-j_c) dlnr]

centred about the point :math:`k_c`.

The centre points :math:`r_c` and :math:`k_c` of the periodic intervals may be
chosen arbitrarily; but it would be normal to choose the product

.. math::
 :label: ham5

 kr = k_c r_c = k_j r_{(n+1-j)} = k_{(n+1-j)} r_j

to be about 1 (or 2, or pi, to taste).

The FFTLog algorithm is (see [Hami00]_):

1. FFT the input array :math:`a_j` to obtain the Fourier coefficients
 :math:`c_m` ;
2. Multiply :math:`c_m` by
 :math:`u_m = (kr)^{- i 2 m \pi/(n dlnr)} U_{\mu}[q + i 2 m \pi/(n dlnr)]`
 where :math:`U_{\mu}(x) = 2^x \Gamma[(\mu+1+x)/2] / \Gamma[(\mu+1-x)/2]` to
 obtain :math:`c_m u_m`;
3. FFT :math:`c_m u_m` back to obtain the discrete Hankel transform
 :math:`\tilde{a}_j`.

The Fourier sine and cosine transforms
``````````````````````````````````````

.. math::
    :label: ham6

    \tilde{A}(k) = \sqrt{2/\pi} \int^\infty_0 A(r) \sin(k r) \,dr \, ,

.. math::
    :label: ham7

    \tilde{A}(k) = \sqrt{2/\pi} \int^\infty_0 A(r) \cos(k r) \,dr \, ,

may be regarded as special cases of the Hankel transform with :math:`\mu = 1/2`
and :math:`-1/2` since

.. math::
    :label: ham8

    \sqrt{2/\pi} \sin(x) = \sqrt(x) J_{1/2} (x) \, ,

.. math::
    :label: ham9

    \sqrt{2/\pi} \cos(x) = \sqrt(x) J_{-1/2} (x) \, .


The Fourier transforms may be done by making the substitutions

.. math::
    :label: ham10

    A(r) = a(r) r^{q-1/2} \quad \text{and} \quad
    \tilde{A}(k) = \tilde{a}(k) k^{-q-1/2}

and Hankel transforming :math:`a(r)` with a power law bias :math:`(k r)^q`

.. math::
    :label: ham11

    \tilde{a}(k) = \int^\infty_0 a(r) (k r)^q J_{\pm 1/2} (k r) k \,dr \, .

Different choices of power law bias :math:`q` lead to different discrete
Fourier transforms of :math:`A(r)`, because the assumption of periodicity of
:math:`a(r) = A(r) r^{-q+(1/2)}` is different for different :math:`q`.

If :math:`A(r)` is a power law, :math:`A(r)` proportional to
:math:`r^{q-(1/2)}`, then applying a bias :math:`q` yields a discrete Fourier
transform :math:`\tilde{A}(k)` that is exactly equal to the continuous Fourier
transform, because then :math:`a(r)` is a constant, which is a periodic
function.

The Hankel transform
````````````````````

.. math::
 :label: ham12

 \tilde{A}(k) = \int^\infty_0 A(r) J_{\mu} (k r) k \,dr

may be done by making the substitutions

.. math::
 :label: ham13

 A(r) = a(r) r^q \quad \text{and} \quad \tilde{A}(k) = \tilde{a}(k) k^{-q}

and Hankel transforming :math:`a(r)` with a power law bias :math:`(k r)^q`

.. math::
 :label: ham14

 \tilde{a}(k) = \int^\infty_0 a(r) (k r)^q J_{\mu} (k r) k \,dr \, .

Different choices of power law bias :math:`q` lead to different discrete Hankel
transforms of :math:`A(r)`, because the assumption of periodicity of
:math:`a(r) = A(r) r^{-q}` is different for different :math:`q`.

If :math:`A(r)` is a power law, :math:`A(r)` proportional to :math:`r^q`, then
applying a bias :math:`q` yields a discrete Hankel transform
:math:`\tilde{A}(k)` that is exactly equal to the continuous Hankel transform,
because then :math:`a(r)` is a constant, which is a periodic function.

There are five routines:
````````````````````````
Comments in the subroutines contain further details.

1. **subroutine `fhti(n,mu,q,dlnr,kr,kropt,wsave,ok)`**
   is an initialization routine.

2. **subroutine `fftl(n,a,rk,dir,wsave)`**
   computes the discrete Fourier sine or cosine transform of a logarithmically
   spaced periodic sequence. This is a driver routine that calls `fhtq`.

3. **subroutine `fht(n,a,dir,wsave)`**
   computes the discrete Hankel transform of a logarithmically spaced periodic
   sequence. This is a driver routine that calls `fhtq`.

4. **subroutine `fhtq(n,a,dir,wsave)`**
   computes the biased discrete Hankel transform of a logarithmically spaced
   periodic sequence. **This is the basic FFTLog routine.**

5. **real*8 function `krgood(mu,q,dlnr,kr)`**
   takes an input `kr` and returns the nearest low-ringing `kr`. This is an
   optional routine called by `fhti`.

**END of the original documentation from the file `fftlog.f`**

"""
import numpy as np
from scipy.special import loggamma
from scipy.fftpack import rfft, irfft

__all__ = ['fhti', 'fftl', 'fht', 'fhtq', 'krgood']


[docs]def fhti(n, mu, dlnr, q=0, kr=1, kropt=0):
    r"""Initialize the working array xsave used by fftl, fht, and fhtq.

    fhti initializes the working array xsave used by fftl, fht, and fhtq. fhti
    need be called once, whereafter fftl, fht, or fhtq may be called many
    times, as long as n, mu, q, dlnr, and kr remain unchanged. fhti should be
    called each time n, mu, q, dlnr, or kr is changed. The work array xsave
    should not be changed between calls to fftl, fht, or fhtq.

    Parameters
    ----------
    n : int
        Number of points in the array to be transformed; n may be any positive
        integer, but the FFT routines run fastest if n is a product of small
        primes 2, 3, 5.

    mu : float
        Index of J_mu in Hankel transform; mu may be any real number, positive
        or negative.

    dlnr : float
        Separation between natural log of points; dlnr may be positive or
        negative.

    q : float, optional
        Exponent of power law bias; q may be any real number, positive or
        negative. If in doubt, use q = 0, for which case the Hankel transform
        is orthogonal, i.e. self-inverse, provided also that, for n even, kr is
        low-ringing. Non-zero q may yield better approximations to the
        continuous Hankel transform for some functions.
        Defaults to 0 (unbiased).

    kr : float, optional
        k_c r_c where c is central point of array
        = k_j r_(n+1-j) = k_(n+1-j) r_j .
        Normally one would choose kr to be about 1 (default) (or 2, or pi, to
        taste).

    kropt : int, optional; {0, 1, 2, 3}
        - 0 to use input kr as is (default);
        - 1 to change kr to nearest low-ringing kr, quietly;
        - 2 to change kr to nearest low-ringing kr, verbosely;
        - 3 for option to change kr interactively.

    Returns
    -------
    kr : float, optional
        kr, adjusted depending on kropt.

    xsave : array
        Working array used by fftl, fht, and fhtq. Dimension:
        - for q = 0 (unbiased transform): n+3
        - for q != 0 (biased transform): 1.5*n+4
        If odd, last element is not needed.

    """

    # adjust kr
    if kropt == 0:    # keep kr as is
        pass
    elif kropt == 1:  # change kr to low-ringing kr quietly
        kr = krgood(mu, q, dlnr, kr)
    elif kropt == 2:  # change kr to low-ringing kr verbosely
        d = krgood(mu, q, dlnr, kr)
        if abs(kr/d - 1) >= 1e-15:
            kr = d
            print(" kr changed to ", kr)
    else:             # option to change kr to low-ringing kr interactively
        d = krgood(mu, q, dlnr, kr)
        if abs(kr/d-1.0) >= 1e-15:
            print(" change kr = ", kr)
            print(" to low-ringing kr = ", d)
            go = input("? [CR, y=yes, n=no, x=exit]: ")
            if go.lower() in ['', 'y']:
                kr = d
                print(" kr changed to ", kr)
            elif go.lower() == 'n':
                print(" kr left unchanged at ", kr)
            else:
                print("exit")
                return False

    # return if n is <= 0
    if n <= 0:
        return kr

    # The normal FFT is not initialized here as in the original FFTLog code, as
    # the `scipy.fftpack`-FFT routines `rfft` and `irfft` do that internally.
    # Therefore xsave in `pyfftlog` is 2*n+15 elements shorter, and named
    # xsave to not confuse it with xsave from the FFT.

    if q == 0:  # unbiased case (q = 0)
        ln2kr = np.log(2.0/kr)
        xp = (mu + 1)/2.0
        d = np.pi/(n*dlnr)

        m = np.arange(1, (n+1)/2)
        y = m*d  # y = m*pi/(n*dlnr)
        zp = loggamma(xp + 1j*y)
        arg = 2.0*(ln2kr*y + zp.imag)  # Argument of kr^(-2 i y) U_mu(2 i y)

        # Arange xsave: [q, dlnr, kr, cos, sin]
        xsave = np.empty(2*arg.size+3)
        xsave[0] = q
        xsave[1] = dlnr
        xsave[2] = kr
        xsave[3::2] = np.cos(arg)
        xsave[4::2] = np.sin(arg)

        # Altogether 3 + 2*(n/2) elements used for q = 0, which is n+3 for even
        # n, n+2 for odd n.

    else:       # biased case (q != 0)
        ln2 = np.log(2.0)
        ln2kr = np.log(2.0/kr)
        xp = (mu + 1 + q)/2.0
        xm = (mu + 1 - q)/2.0

        # first element of rest of xsave
        y = 0

        # case where xp or xm is a negative integer
        xpnegi = np.round(xp) == xp and xp <= 0
        xmnegi = np.round(xm) == xm and xm <= 0
        if xpnegi or xmnegi:

            # case where xp and xm are both negative integers
            # U_mu(q) = 2^q Gamma[xp]/Gamma[xm] is finite in this case
            if xpnegi and xmnegi:
                # Amplitude and Argument of U_mu(q)
                amp = np.exp(ln2*q)
                if xp > xm:
                    m = np.arange(1,  np.round(xp - xm)+1)
                    amp *= xm + m - 1
                elif xp < xm:
                    m = np.arange(1,  np.round(xm - xp)+1)
                    amp /= xp + m - 1
                arg = np.round(xp + xm)*np.pi

            else:  # one of xp or xm is a negative integer
                # Transformation is singular if xp is -ve integer, and inverse
                # transformation is singular if xm is -ve integer, but
                # transformation may be well-defined if sum_j a_j = 0, as may
                # well occur in physical cases.  Policy is to drop the
                # potentially infinite constant in the transform.

                if xpnegi:
                    print('fhti: (mu+1+q)/2 =', np.round(xp), 'is -ve integer',
                          ', yields singular transform:\ntransform will omit',
                          'additive constant that is generically infinite,',
                          '\nbut that may be finite or zero if the sum of the',
                          'elements of the input array a_j is zero.')
                else:
                    print('fhti: (mu+1-q)/2 =', np.round(xm), 'is -ve integer',
                          ', yields singular inverse transform:\n inverse',
                          'transform will omit additive constant that is',
                          'generically infinite,\nbut that may be finite or',
                          'zero if the sum of the elements of the input array',
                          'a_j is zero.')
                amp = 0
                arg = 0

        else:  # neither xp nor xm is a negative integer
            zp = loggamma(xp + 1j*y)
            zm = loggamma(xm + 1j*y)

            # Amplitude and Argument of U_mu(q)
            amp = np.exp(ln2*q + zp.real - zm.real)
            # note +Im(zm) to get conjugate value below real axis
            arg = zp.imag + zm.imag

        # first element: cos(arg) = ±1, sin(arg) = 0
        xsave1 = amp*np.cos(arg)

        # remaining elements of xsave
        d = np.pi/(n*dlnr)
        m = np.arange(1, (n+1)/2)
        y = m*d  # y = m pi/(n dlnr)
        zp = loggamma(xp + 1j*y)
        zm = loggamma(xm + 1j*y)
        # Amplitude and Argument of kr^(-2 i y) U_mu(q + 2 i y)
        amp = np.exp(ln2*q + zp.real - zm.real)
        arg = 2*ln2kr*y + zp.imag + zm.imag

        # Arrange xsave: [q, dlnr, kr, xsave1, cos, sin]
        xsave = np.empty(3*arg.size+4)
        xsave[0] = q
        xsave[1] = dlnr
        xsave[2] = kr
        xsave[3] = xsave1
        xsave[4::3] = amp
        xsave[5::3] = np.cos(arg)
        xsave[6::3] = np.sin(arg)

        # Altogether 3 + 3*(n/2)+1 elements used for q != 0, which is (3*n)/2+4
        # for even n, (3*n)/2+3 for odd n.  For even n, the very last element
        # of xsave [i.e. xsave(3*m+1)=sin(arg) for m=n/2] is not used within
        # FFTLog; if a low-ringing kr is used, this element should be zero.
        # The last element is computed in case somebody wants it.

    return kr, xsave



[docs]def fftl(a, xsave, rk=1, tdir=1):
    r"""Logarithmic fast Fourier transform FFTLog.

    This is a driver routine that calls :func:`fhtq`.

    `fftl` computes a discrete version of the Fourier sine (if mu = 1/2) or
    cosine (if mu = -1/2) transform

    .. math::

        \tilde{A}(k) = \sqrt{2/\pi} \int^\infty_0 A(r) \sin(k r) \,dr \, ,

    .. math::

        \tilde{A}(k) = \sqrt{2/\pi} \int^\infty_0 A(r) \cos(k r) \,dr \, ,

    by making the substitutions

    .. math::

        A(r) = a(r) r^{q-1/2} \quad \text{and} \quad
        \tilde{A}(k) = \tilde{a}(k) k^{-q-1/2}

    and applying a biased Hankel transform to :math:`a(r)`.

    The steps are:
    1. :math:`a(r) = A(r) r^[-dir (q-0.5)]`
    2. call `fhtq` to transform :math:`a(r) \rightarrow \tilde{a}(k)`
    3. :math:`\tilde{A}(k) = \tilde{a}(k) k^[-dir (q+0.5)]`

    `fhti` must be called before the first call to `fftl`, with `mu=1/2` for a
    sine transform, or `mu=-1/2` for a cosine transform.

    A call to `fftl` with `dir=1` followed by a call to `fftl` with `dir=-1`
    (and rk unchanged), or vice versa, leaves the array a unchanged.

    Parameters
    ----------
    a : array
        Array A(r) to transform: a(j) is A(r_j) at r_j = r_c exp[(j-jc) dlnr],
        where jc = (n+1)/2 = central index of array.

    xsave : array
        Working array set up by fhti.

    rk : float, optional
        r_c/k_c = r_j/k_j (a constant, the same constant for any j); rk is not
        (necessarily) the same quantity as kr.  rk is used only to multiply the
        output array by sqrt(rk)^dir, so if you want to do the normalization
        later, or you don't care about the normalization, you can set rk = 1.
        Defaults to 1.

    tdir : int, optional; {1, -1}
        -  1 for forward transform (default),
        - -1 for backward transform.

        A backward transform (dir = -1) is the same as a forward transform with
        q -> -q and rk -> 1/rk, for any kr if n is odd, for low-ringing kr if n
        is even.

    Returns
    -------
    a : array
        Transformed array Ã(k): a(j) is Ã(k_j) at k_j = k_c exp[(j-jc) dlnr].

    """
    fct = a.copy()
    q = xsave[0]
    dlnr = xsave[1]
    kr = xsave[2]

    # centre point of array
    jc = np.array((fct.size + 1)/2.0)
    j = np.arange(fct.size)+1

    # a(r) = A(r) (r/rc)^[-dir*(q-.5)]
    fct *= np.exp(-tdir*(q - 0.5)*(j - jc)*dlnr)

    # transform a(r) -> ã(k)
    fct = fhtq(fct, xsave, tdir)

    # Ã(k) = ã(k) k^[-dir*(q+.5)] rc^[-dir*(q-.5)]
    #      = ã(k) (k/kc)^[-dir*(q+.5)] (kc rc)^(-dir*q) (rc/kc)^(dir*.5)
    lnkr = np.log(kr)
    lnrk = np.log(rk)
    fct *= np.exp(-tdir*((q + 0.5)*(j - jc)*dlnr + q*lnkr - lnrk/2.0))

    return fct



[docs]def fht(a, xsave, tdir=1):
    r"""Fast Hankel transform FHT.

    This is a driver routine that calls :func:`fhtq`.

    `fht` computes a discrete version of the Hankel transform

    .. math::

        \tilde{A}(k) = \int^\infty_0 A(r) J_{\mu} (k r) k \,dr \,

    by making the substitutions

    .. math::

        A(r) = a(r) r^q \quad \text{and} \quad
        \tilde{A}(k) = \tilde{a}(k) k^{-q}

    and applying a biased Hankel transform to :math:`a(r)`.

    The steps are:
    1. :math:`a(r) = A(r) r^{-dir q}`
    2. call `fhtq` to transform :math:`a(r) \rightarrow \tilde{a}(k)`
    3. :math:`\tilde{A}(k) = \tilde{a}(k) k^{-dir q}`

    `fhti` must be called before the first call to `fht`.

    A call to `fht` with `dir=1` followed by a call to `fht` with `dir=-1`, or
    vice versa, leaves the array a unchanged.


    Parameters
    ----------
    a : array
        Array A(r) to transform: a(j) is A(r_j) at r_j = r_c exp[(j-jc) dlnr],
        where jc = (n+1)/2 = central index of array.

    xsave : array
        Working array set up by fhti.

    tdir : int, optional; {1, -1}
        -  1 for forward transform (default),
        - -1 for backward transform.

        A backward transform (dir = -1) is the same as a forward transform with
        q -> -q, for any kr if n is odd, for low-ringing kr if n is even.

    Returns
    -------
    a : array
        Transformed array Ã(k): a(j) is Ã(k_j) at k_j = k_c exp[(j-jc) dlnr].

    """
    fct = a.copy()
    q = xsave[0]
    dlnr = xsave[1]
    kr = xsave[2]

    # a(r) = A(r) (r/rc)^(-dir*q)
    if q != 0:
        #  centre point of array
        jc = np.array((fct.size + 1)/2.0)
        j = np.arange(fct.size)+1
        fct *= np.exp(-tdir*q*(j - jc)*dlnr)

    # transform a(r) -> ã(k)
    fct = fhtq(fct, xsave, tdir)

    # Ã(k) = ã(k) (k rc)^(-dir*q)
    #      = ã(k) (k/kc)^(-dir*q) (kc rc)^(-dir*q)
    if q != 0:
        lnkr = np.log(kr)
        fct *= np.exp(-tdir*q*((j - jc)*dlnr + lnkr))

    return fct



[docs]def fhtq(a, xsave, tdir=1):
    r"""Kernel routine of FFTLog.

    This is the basic FFTLog routine.

    `fhtq` computes a discrete version of the biased Hankel transform

    .. math::

        \tilde{a}(k) = \int^\infty_0 a(r) (k r)^q J_{\mu} (k r) k \,dr \, .

    `fhti` must be called before the first call to `fhtq`.

    A call to `fhtq` with `dir=1` followed by a call to `fhtq` with `dir=-1`,
    or vice versa, leaves the array a unchanged.

    Parameters
    ----------
    a : array
        Periodic array a(r) to transform: a(j) is a(r_j) at r_j = r_c
        exp[(j-jc) dlnr] where jc = (n+1)/2 = central index of array.

    xsave : array
        Working array set up by fhti.

    tdir : int, optional; {1, -1}
        -  1 for forward transform (default),
        - -1 for backward transform.

        A backward transform (dir = -1) is the same as a forward transform with
        q -> -q, for any kr if n is odd, for low-ringing kr if n is even.

    Returns
    -------
    a : array
        Transformed periodic array ã(k): a(j) is ã(k_j) at k_j = k_c exp[(j-jc)
        dlnr].

    """
    fct = a.copy()
    q = xsave[0]
    n = fct.size

    # normal FFT
    fct = rfft(fct)

    m = np.arange(1, n//2, dtype=int)  # index variable
    if q == 0:  # unbiased (q = 0) transform
        # multiply by (kr)^[- i 2 m pi/(n dlnr)] U_mu[i 2 m pi/(n dlnr)]
        ar = fct[2*m-1]
        ai = fct[2*m]
        fct[2*m-1] = ar*xsave[2*m+1] - ai*xsave[2*m+2]
        fct[2*m] = ar*xsave[2*m+2] + ai*xsave[2*m+1]
        # problem(2*m)atical last element, for even n
        if np.mod(n, 2) == 0:
            ar = xsave[-2]
            if (tdir == 1):  # forward transform: multiply by real part
                # Why? See http://casa.colorado.edu/~ajsh/FFTLog/index.html#ure
                fct[-1] *= ar
            elif (tdir == -1):  # backward transform: divide by real part
                # Real part ar can be zero for maximally bad choice of kr.
                # This is unlikely to happen by chance, but if it does, policy
                # is to let it happen.  For low-ringing kr, imaginary part ai
                # is zero by construction, and real part ar is guaranteed
                # nonzero.
                fct[-1] /= ar

    else:  # biased (q != 0) transform
        # multiply by (kr)^[- i 2 m pi/(n dlnr)] U_mu[q + i 2 m pi/(n dlnr)]
        # phase
        ar = fct[2*m-1]
        ai = fct[2*m]
        fct[2*m-1] = ar*xsave[3*m+2] - ai*xsave[3*m+3]
        fct[2*m] = ar*xsave[3*m+3] + ai*xsave[3*m+2]

        if tdir == 1:  # forward transform: multiply by amplitude
            fct[0] *= xsave[3]
            fct[2*m-1] *= xsave[3*m+1]
            fct[2*m] *= xsave[3*m+1]

        elif tdir == -1:  # backward transform: divide by amplitude
            # amplitude of m=0 element
            ar = xsave[3]
            if ar == 0:
                # Amplitude of m=0 element can be zero for some mu, q
                # combinations (singular inverse); policy is to drop
                # potentially infinite constant.
                fct[0] = 0
            else:
                fct[0] /= ar

            # remaining amplitudes should never be zero
            fct[2*m-1] /= xsave[3*m+1]
            fct[2*m] /= xsave[3*m+1]

        # problematical last element, for even n
        if np.mod(n, 2) == 0:
            m = int(n/2)
            ar = xsave[3*m+2]*xsave[3*m+1]
            if tdir == 1:  # forward transform: multiply by real part
                fct[-1] *= ar
            elif (tdir == -1):  # backward transform: divide by real part
                # Real part ar can be zero for maximally bad choice of kr.
                # This is unlikely to happen by chance, but if it does, policy
                # is to let it happen.  For low-ringing kr, imaginary part ai
                # is zero by construction, and real part ar is guaranteed
                # nonzero.
                fct[-1] /= ar

    # normal FFT back
    fct = irfft(fct)

    # reverse the array and at the same time undo the FFTs' multiplication by n
    # => Just reverse the array, the rest is already done in drfft.
    fct = fct[::-1]

    return fct



[docs]def krgood(mu, q, dlnr, kr):
    r"""Return optimal kr.

    Use of this routine is optional.

    Choosing kr so that

    .. math::

        (k r)^{- i pi/dlnr} U_{\mu}(q + i pi/dlnr)

    is real may reduce ringing of the discrete Hankel transform, because it
    makes the transition of this function across the period boundary smoother.

    Parameters
    ----------
    mu : float
        index of J_mu in Hankel transform; mu may be any real number, positive
        or negative.

    q : float
        exponent of power law bias; q may be any real number, positive or
        negative. If in doubt, use q = 0, for which case the Hankel transform
        is orthogonal, i.e. self-inverse, provided also that, for n even, kr is
        low-ringing. Non-zero q may yield better approximations to the
        continuous Hankel transform for some functions.

    dlnr : float
        separation between natural log of points; dlnr may be positive or
        negative.

    kr : float, optional
        k_c r_c where c is central point of array
        = k_j r_(n+1-j) = k_(n+1-j) r_j .
        Normally one would choose kr to be about 1 (default) (or 2, or pi, to
        taste).

    Returns
    -------
    krgood : float
        low-ringing value of kr nearest to input kr. ln(krgood) is always
        within dlnr/2 of ln(kr).

    """
    if dlnr == 0:
        return kr

    xp = (mu + 1.0 + q)/2.0
    xm = (mu + 1.0 - q)/2.0
    y = 1j*np.pi/(2.0*dlnr)
    zp = loggamma(xp + y)
    zm = loggamma(xm + y)

    # low-ringing condition is that following should be integral
    arg = np.log(2.0/kr)/dlnr + (zp.imag + zm.imag)/np.pi

    # return low-ringing kr
    return kr*np.exp((arg - np.round(arg))*dlnr)





          

      

      

    

  

    
      
          
            
  
Computation times

00:01.155 total execution time for examples files:








	FFTLog-Test (fftlogtest.py)

	00:00.595

	0.0 MB



	Geophysical Electromagnetic modelling (geophysical_em.py)

	00:00.561

	0.0 MB









          

      

      

    

  

    
      
          
            
  
Computation times

00:00.286 total execution time for examples_contrib files:








	Sine Transform (sinetransform.py)

	00:00.286

	0.0 MB









          

      

      

    

  _static/up-pressed.png





_static/up.png





_images/sphx_glr_sinetransform_001.png
arlf)

Frequency domain

Time domain

sin(t)

1.00

075

050

025

0.00

-0.25

-0.50

-0.75

-1.00

— sin(t)
Reconstructed

1072

100

1072 100






_images/sphx_glr_sinetransform_thumb.png
wn

Frequency domain

“Time domain

ant

100

0

W






_static/broken_example.png





_static/ajax-loader.gif





_static/comment-bright.png





_static/comment-close.png





_images/sphx_glr_fftlogtest_thumb.png
17 expl=r ) ko) kdr= ki texp(-ki2)

#3 expl-r) K exp(-k2)
b aa—. S e W





_images/sphx_glr_geophysical_em_001.png
Amplitude (v/m)

le-12 Frequency domain Time domain le-12
—— Analytical —— Analytical
FFTLog, u= - 0.5 -=-- FFTLog, p= -0.5

FFTLog, u= +0.5

FFTLog, u= +0.5

1073 1071 10! 10°
Frequency (Hz)

1073 1071 10! 10°
Time (s)

RS
Amplitude (V/m)





_images/sphx_glr_fftlogtest_001.png
100

1072

107*

10°¢

107

7+  exp(=r2/2) Julk, ) k dr = k#* Texp(~k?12)

L exp(-r/2)

ki* texp(=k?/2)

—— Theoretical
FFTLog

1073

1071

10!

10°

107 107!

100

1072

107*

10°¢

107





_images/sphx_glr_geophysical_em_thumb.png





_static/comment.png





nav.xhtml

    
      Table of Contents


      
        		
          pyfftlog
        


      


    
  

_static/file.png





_static/down-pressed.png





_static/down.png





_static/plus.png





_static/minus.png





_static/no_image.png





